
Software security assurance a matter of global significance:

product life cycle propositions

Georgia College and State University

Sr. Load & Performance

ABSTRACT

The global business world of the 21
companies brought on by security breeches. The business world today dictates the urgency and
importance of frontend life cycle software security development. The objective of this
to examine factors impacting security
cycle approach and the outcomes. This conceptual piece puts forth measurable
based on literature research and industry expertise as a first step to empirically examining the
benefits and cost of a holistic approach to software security development.
literature and industry expertise clearly indicate t
development of software security.

Key Words: Software Security, Functional Testing,
Financial Impact

Journal of Technology Research

Software Security Assurance

security assurance a matter of global significance:

product life cycle propositions

Doreen (Dee) Sams
Georgia College and State University

Phil Sams

Sr. Load & Performance Engineering Consultant
Milledgeville, Georgia USA

The global business world of the 21st century has seen catastrophic financial losses to
companies brought on by security breeches. The business world today dictates the urgency and

ontend life cycle software security development. The objective of this
to examine factors impacting security-oriented software development from a holistic product life
cycle approach and the outcomes. This conceptual piece puts forth measurable propositions
based on literature research and industry expertise as a first step to empirically examining the
benefits and cost of a holistic approach to software security development. Findings from the
literature and industry expertise clearly indicate the need for early product life cycle
development of software security.

Functional Testing, Software Development Product Life Cycle

Journal of Technology Research

Software Security Assurance, Page 1

security assurance a matter of global significance:

century has seen catastrophic financial losses to
companies brought on by security breeches. The business world today dictates the urgency and

ontend life cycle software security development. The objective of this research is
oriented software development from a holistic product life

propositions
based on literature research and industry expertise as a first step to empirically examining the

Findings from the
he need for early product life cycle

Software Development Product Life Cycle,

INTRODUCTION

This propositional paper is a first step in the process of

immediate and growing strategic business decision as to the benefits of computer software
security testing beyond the traditional quality control testing involving functional (i.e., assurance
that software functions as it is inte
testing. The paper focuses primary on the
application security) decision as to cost (i.e., short run and long run) versus benefits within the
software development life cycle (SDLC).

Technical Definitions

Terminology is important in the understanding of software development and testing.

Therefore, the following definitions are offered. Quality Assurance (QA) is the prevention of
defects. Quality Control (QC) is the detection (testing) and removal of softwar
Functional testing is the software verification process that determines correct or proper
application behavior for only one user. Regression testing is verifying that what was working in a
previous application release still works in subsequent r
process of testing an application to determine if it can perform properly with multiple concurrent
users, possibly thousands. Security testing goes much deeper than traditional functional or
regression testing. For the purpose of this study, software risk is defined as the combination of
the likelihood of a defect occurring and the pot
testing verifies correct software behavior in the presence of a malicious attack.
software error that an attacker can exploit.
security is not security software” (McGraw, 2004, p. 33).

Background

In the past, the role of quality

application functional and perhaps load and performance testing and not globally on
security. Software security encompasses, but is not limited to
management, planning and operations securit
Software security testing involves the person(s)
functions.

In today’s business environment, functional testing of WEB or ecommerce applications
or load-performance testing alone is
Literature (e.g. Gallagher, et al., 2006) reveals, application functional, regression, and load
performance testing has become more generally accepted as a necessity in the SDLC. On the
other hand, application security testing, a vital element of strategic business
possibly today’s most overlooked aspect of
diligence.

The tipping point that ushers in the necessity for
traditional functional and load-performance testin
globalization and internationalization of markets. The rapid integration of national economies
into the international economy comes in part through the spread of technology (Bhagwati, 2007).
Companies whether national or multinational, are affected by rapid advances in

Journal of Technology Research

Software Security Assurance

This propositional paper is a first step in the process of empirically addressing an
immediate and growing strategic business decision as to the benefits of computer software
security testing beyond the traditional quality control testing involving functional (i.e., assurance

intended) and load-performance testing to software
testing. The paper focuses primary on the software security testing (formerly known as

decision as to cost (i.e., short run and long run) versus benefits within the
lopment life cycle (SDLC).

Terminology is important in the understanding of software development and testing.
Therefore, the following definitions are offered. Quality Assurance (QA) is the prevention of
defects. Quality Control (QC) is the detection (testing) and removal of software defects.
Functional testing is the software verification process that determines correct or proper
application behavior for only one user. Regression testing is verifying that what was working in a
previous application release still works in subsequent releases. Load-performance testing is the
process of testing an application to determine if it can perform properly with multiple concurrent
users, possibly thousands. Security testing goes much deeper than traditional functional or

the purpose of this study, software risk is defined as the combination of
the likelihood of a defect occurring and the potential impact of the occurrence. Software security
testing verifies correct software behavior in the presence of a malicious attack. V
software error that an attacker can exploit. Therefore, it is important to understand that “software
security is not security software” (McGraw, 2004, p. 33).

In the past, the role of quality control (QC) testing has, by necessity, focused on testing of
application functional and perhaps load and performance testing and not globally on

security encompasses, but is not limited to software security, security
management, planning and operations security, physical security, network, and Internet security.
Software security testing involves the person(s) who should do the what security testing

In today’s business environment, functional testing of WEB or ecommerce applications
ce testing alone is not sufficient (Gallagher, Jeffries, and Landauer 2006).

(e.g. Gallagher, et al., 2006) reveals, application functional, regression, and load
performance testing has become more generally accepted as a necessity in the SDLC. On the
other hand, application security testing, a vital element of strategic business operations is
possibly today’s most overlooked aspect of software security and has not yet been given due

The tipping point that ushers in the necessity for software security testing beyond the
performance testing is the additional risk brought on by the

obalization and internationalization of markets. The rapid integration of national economies
into the international economy comes in part through the spread of technology (Bhagwati, 2007).

onal or multinational, are affected by rapid advances in global

Journal of Technology Research

Software Security Assurance, Page 2

empirically addressing an
immediate and growing strategic business decision as to the benefits of computer software
security testing beyond the traditional quality control testing involving functional (i.e., assurance

software security
software security testing (formerly known as

decision as to cost (i.e., short run and long run) versus benefits within the

Terminology is important in the understanding of software development and testing.
Therefore, the following definitions are offered. Quality Assurance (QA) is the prevention of

e defects.
Functional testing is the software verification process that determines correct or proper
application behavior for only one user. Regression testing is verifying that what was working in a

performance testing is the
process of testing an application to determine if it can perform properly with multiple concurrent
users, possibly thousands. Security testing goes much deeper than traditional functional or

the purpose of this study, software risk is defined as the combination of
Software security
Vulnerability is a

Therefore, it is important to understand that “software

ssity, focused on testing of
application functional and perhaps load and performance testing and not globally on software

, security
and Internet security.

security testing

In today’s business environment, functional testing of WEB or ecommerce applications
not sufficient (Gallagher, Jeffries, and Landauer 2006).

(e.g. Gallagher, et al., 2006) reveals, application functional, regression, and load-
performance testing has become more generally accepted as a necessity in the SDLC. On the

operations is
been given due-

security testing beyond the
g is the additional risk brought on by the

obalization and internationalization of markets. The rapid integration of national economies
into the international economy comes in part through the spread of technology (Bhagwati, 2007).

global

technology that has created great opportunities for expansion into new markets and increased
revenues. However, along with the benefits of globalization, come negative and sometime
unforeseen consequences such as the invasion and theft of
and data of company secrets, customers’ personal data, and possibly the
company’s ability to perform competitively in the global marketplace. Risks have
through higher levels of integration among business systems such as Customer Relationship
Management (CRM), etc.; thus, creating a need for even stronger application security measures
to circumvent and prevent extensive
security testing (i.e., the probing of risk previously identified through risk analysis) is changing
from optional to mandatory.

In order to remain financially sustainable in a globalized economy,
must be seen as more than a tool; it must be viewed from a systems perspective. Taking
systems perspective, application security is part of a discipline integrated in a total quality
management process involving test of the entire
system. Costs associated with poor or inadequate software security have grown rapidly; thus,
companies are beginning to invest
associated quality assurance (QA) and quality contro
cascading costs that typically occur
include cost for: requirements, design, implementation, testing, and production defects. This
study proposes that prevention of c
systems) security of the software
the research and development stage of the product life cycle that testing
research and development (R&D) phase

Therefore, this study examines the role of
enterprise applications, frontend resource application, and risk reduction methodology in the
prevention of the potential for catastrophic financial impact on the company developing the
software, and the user of the software application product. This study is a first step, in that, it
puts forth measurable propositions that can be addressed through mixed methodologies such as
surveys, in-depth interviews and focus groups of software test engineers, managers, and clie
across a wide-variety of companies and industries.

LITERATURE REVIEW AND PROPOSITIONS

Sustainability, by its very nature, involves using resources of the company in such a
manner that the company remains financial sustainable over time. Moreover, to
risk, development of risk management must begin in the first stage of the SDLC.

A financially sustainable company wisely plans the use of limited
materials and human capital); thus, to be sustainable means planning for sec
must begin in the research and development (R&D) stage of a product’s life cycle. The product
life cycle as defined by Kotler and Armstrong (2011), begins in the research and development
stage (i.e., product development) of a product’s li
high and sales are zero. From this stage, the product enters the introductory
growth is slow, marketing costs are
growth stage and then there is a maturity period that leads into the final stage known as the
decline stage (Kotler and Armstrong 2011). However, not all products follow this typical life
cycle and many go into decline rapidly for various reasons. These products are

Journal of Technology Research

Software Security Assurance

created great opportunities for expansion into new markets and increased
revenues. However, along with the benefits of globalization, come negative and sometime

consequences such as the invasion and theft of business critical proprietary
, customers’ personal data, and possibly the destruction of a

company’s ability to perform competitively in the global marketplace. Risks have
through higher levels of integration among business systems such as Customer Relationship
Management (CRM), etc.; thus, creating a need for even stronger application security measures
to circumvent and prevent extensive financial losses. Therefore, the role of risk-based
security testing (i.e., the probing of risk previously identified through risk analysis) is changing

In order to remain financially sustainable in a globalized economy, software
be seen as more than a tool; it must be viewed from a systems perspective. Taking

on security is part of a discipline integrated in a total quality
management process involving test of the entire software system and not merely parts of the
system. Costs associated with poor or inadequate software security have grown rapidly; thus,

beginning to invest in security training, automation testing tools, and various
associated quality assurance (QA) and quality control (QC) methodologies to circumvent

occur over the software development process. Cascading costs
requirements, design, implementation, testing, and production defects. This

study proposes that prevention of cascading costs by holistically engaging in global (i.e.,
software system necessitates that as each new product is developed in

the research and development stage of the product life cycle that testing should begin
earch and development (R&D) phases.

Therefore, this study examines the role of software security testing as a cost reduction of
enterprise applications, frontend resource application, and risk reduction methodology in the
prevention of the potential for catastrophic financial impact on the company developing the

software application product. This study is a first step, in that, it
puts forth measurable propositions that can be addressed through mixed methodologies such as

depth interviews and focus groups of software test engineers, managers, and clie
variety of companies and industries.

AND PROPOSITIONS

Sustainability, by its very nature, involves using resources of the company in such a
manner that the company remains financial sustainable over time. Moreover, to reduce security
risk, development of risk management must begin in the first stage of the SDLC.

A financially sustainable company wisely plans the use of limited-resources (i.e.,
materials and human capital); thus, to be sustainable means planning for security of
must begin in the research and development (R&D) stage of a product’s life cycle. The product
life cycle as defined by Kotler and Armstrong (2011), begins in the research and development
stage (i.e., product development) of a product’s life. This is a time when expenditures may be

is stage, the product enters the introductory stage,
are high, and expenses heavy. From there the product enters its

then there is a maturity period that leads into the final stage known as the
decline stage (Kotler and Armstrong 2011). However, not all products follow this typical life
cycle and many go into decline rapidly for various reasons. These products are finan

Journal of Technology Research

Software Security Assurance, Page 3

created great opportunities for expansion into new markets and increased
revenues. However, along with the benefits of globalization, come negative and sometime

business critical proprietary software
destruction of a

company’s ability to perform competitively in the global marketplace. Risks have increased
through higher levels of integration among business systems such as Customer Relationship
Management (CRM), etc.; thus, creating a need for even stronger application security measures

based software
security testing (i.e., the probing of risk previously identified through risk analysis) is changing

software security
be seen as more than a tool; it must be viewed from a systems perspective. Taking a

on security is part of a discipline integrated in a total quality
ely parts of the

system. Costs associated with poor or inadequate software security have grown rapidly; thus,
in security training, automation testing tools, and various

l (QC) methodologies to circumvent
over the software development process. Cascading costs

requirements, design, implementation, testing, and production defects. This
ascading costs by holistically engaging in global (i.e.,

system necessitates that as each new product is developed in
should begin early in the

security testing as a cost reduction of
enterprise applications, frontend resource application, and risk reduction methodology in the
prevention of the potential for catastrophic financial impact on the company developing the

software application product. This study is a first step, in that, it
puts forth measurable propositions that can be addressed through mixed methodologies such as

depth interviews and focus groups of software test engineers, managers, and clients

Sustainability, by its very nature, involves using resources of the company in such a
reduce security

risk, development of risk management must begin in the first stage of the SDLC.
resources (i.e.,

urity of software
must begin in the research and development (R&D) stage of a product’s life cycle. The product
life cycle as defined by Kotler and Armstrong (2011), begins in the research and development

fe. This is a time when expenditures may be
stage, in which sales

high, and expenses heavy. From there the product enters its
then there is a maturity period that leads into the final stage known as the

decline stage (Kotler and Armstrong 2011). However, not all products follow this typical life
financial failures

for the company. On this premise, benefits gained through early defect prevention enabled by
early automated testing in the R&D stage of the product life cycle are expected to significantly
outweigh the financial costs involved in fixing the
negative word of mouth and possible lawsuits.

Through the vulnerability of the product comes
may occur at any stage in the product’s life cycle; however, it is proposed that pr
begin as each product idea enters the development stage of its life cycle. It is here where
cascading costs can be circumvented by implementation QA and QC best practices. Once the
product is introduced into the market, the risk is then share
and the company implementing the product (i.e., software). However, the risk to the
development company may be the greatest. Customer satisfaction with the quality of the product
is measured in performance (i.e., ability t
from defects), while high quality also involves consistency in the product’s delivery of benefits
that meets the customer’s expectations). If the product meets or exceeds performance and
conformance, but does not function at the level of the customer’s expectations consistently, the
customer is negatively disconfirmed. Hopefully, the customer will complain and not merely
switch providers. However, the perception of the likelihood of a successful compla
the complaint must result in a corrected or changed situation. Perceived likelihood of success
comes from the customer’s perception of the company’s fairness of the procedures and policies
in arriving at a remedy, the remedy itself, and the
delivered in an acceptable manner (Homans 1961, Lind and Tyler 1988).
software development involves augmenting the product with product support and after sale
service, yet this may not be enough
too often (e.g. when defects cause excessive loss in time, productivity, and money).

Tax, Brown, and Chandrashekaran
have not been successful in gaining resolution to the problem, then they have a propensity to
engage in negative word of mouth or exit the relationship. If the problems persist and/or the
company does not respond quickly and in proportion to the problem, the customer may abandon
the product and the company, which results in a financial loss to the company. Moreover, even
greater damage comes from negative word of mouth advertising from the dissatisfied cu
In today’s electronic age, negative word of mouth spreads at Internet speed and the result to the
company can be catastrophic. Thus, engaging in holistic (i.e., systems)
in the developmental stage of the product by identi
perceived as the smallest threat, gives the company the potential by which it can avoid
immediate and long-term financial risks.

A risk analysis for the development company, by its nature, must assess risk costs
on the actual risk, the size of the risk (as to the extent of cascading affects), its immediate and
long-term impact on the company’s sustainability, prevention costs (i.e., personnel, software
packages, etc.) verses benefits to the company in the s
costs come from the purchase of automated software testing tools ranging in
$250,000+ for tools, plus typically 20% for annual maintenance. Additionally other expenses
typically include a set amount of tool specific training factor
human capital costs, depending on where software quality assurance testers are located, salaries
fall in a range of $35,000 - $60,ooo
testing is a highly specialized area within the computer science field and requires extensive tools
training as well as a minimum of a four

Journal of Technology Research

Software Security Assurance

n this premise, benefits gained through early defect prevention enabled by
automated testing in the R&D stage of the product life cycle are expected to significantly

outweigh the financial costs involved in fixing the problems later, loss of business, and/or
negative word of mouth and possible lawsuits.

bility of the product comes vulnerability of the company. Attacks
at any stage in the product’s life cycle; however, it is proposed that pr

begin as each product idea enters the development stage of its life cycle. It is here where
cascading costs can be circumvented by implementation QA and QC best practices. Once the
product is introduced into the market, the risk is then shared between the development company
and the company implementing the product (i.e., software). However, the risk to the
development company may be the greatest. Customer satisfaction with the quality of the product
is measured in performance (i.e., ability to perform its functions) and conformance (i.e., freedom
from defects), while high quality also involves consistency in the product’s delivery of benefits
that meets the customer’s expectations). If the product meets or exceeds performance and

but does not function at the level of the customer’s expectations consistently, the
customer is negatively disconfirmed. Hopefully, the customer will complain and not merely
switch providers. However, the perception of the likelihood of a successful compla
the complaint must result in a corrected or changed situation. Perceived likelihood of success
comes from the customer’s perception of the company’s fairness of the procedures and policies
in arriving at a remedy, the remedy itself, and the perception that the treatment has been
delivered in an acceptable manner (Homans 1961, Lind and Tyler 1988). Thus, many companies’
software development involves augmenting the product with product support and after sale
service, yet this may not be enough if the overall costs of the defects to the buyer are too high or
too often (e.g. when defects cause excessive loss in time, productivity, and money).

Tax, Brown, and Chandrashekaran (1998) found that if complainants believe that they
have not been successful in gaining resolution to the problem, then they have a propensity to
engage in negative word of mouth or exit the relationship. If the problems persist and/or the

t respond quickly and in proportion to the problem, the customer may abandon
the product and the company, which results in a financial loss to the company. Moreover, even
greater damage comes from negative word of mouth advertising from the dissatisfied cu
In today’s electronic age, negative word of mouth spreads at Internet speed and the result to the
company can be catastrophic. Thus, engaging in holistic (i.e., systems) software
in the developmental stage of the product by identifying risks to the company from what may be
perceived as the smallest threat, gives the company the potential by which it can avoid

term financial risks.
A risk analysis for the development company, by its nature, must assess risk costs

on the actual risk, the size of the risk (as to the extent of cascading affects), its immediate and
term impact on the company’s sustainability, prevention costs (i.e., personnel, software

packages, etc.) verses benefits to the company in the short and long run. In the short run, upfront
costs come from the purchase of automated software testing tools ranging in cost
$250,000+ for tools, plus typically 20% for annual maintenance. Additionally other expenses

amount of tool specific training factored into initial costs.
, depending on where software quality assurance testers are located, salaries

$60,ooo annually for full time manual tester. Automated
testing is a highly specialized area within the computer science field and requires extensive tools
training as well as a minimum of a four-year computer science degree. Therefore, companies

Journal of Technology Research

Software Security Assurance, Page 4

n this premise, benefits gained through early defect prevention enabled by
automated testing in the R&D stage of the product life cycle are expected to significantly

problems later, loss of business, and/or

vulnerability of the company. Attacks
at any stage in the product’s life cycle; however, it is proposed that protection must

begin as each product idea enters the development stage of its life cycle. It is here where
cascading costs can be circumvented by implementation QA and QC best practices. Once the

d between the development company
and the company implementing the product (i.e., software). However, the risk to the
development company may be the greatest. Customer satisfaction with the quality of the product

o perform its functions) and conformance (i.e., freedom
from defects), while high quality also involves consistency in the product’s delivery of benefits
that meets the customer’s expectations). If the product meets or exceeds performance and

but does not function at the level of the customer’s expectations consistently, the
customer is negatively disconfirmed. Hopefully, the customer will complain and not merely
switch providers. However, the perception of the likelihood of a successful complaint means that
the complaint must result in a corrected or changed situation. Perceived likelihood of success
comes from the customer’s perception of the company’s fairness of the procedures and policies

perception that the treatment has been
Thus, many companies’

software development involves augmenting the product with product support and after sale
if the overall costs of the defects to the buyer are too high or

too often (e.g. when defects cause excessive loss in time, productivity, and money).
(1998) found that if complainants believe that they

have not been successful in gaining resolution to the problem, then they have a propensity to
engage in negative word of mouth or exit the relationship. If the problems persist and/or the

t respond quickly and in proportion to the problem, the customer may abandon
the product and the company, which results in a financial loss to the company. Moreover, even
greater damage comes from negative word of mouth advertising from the dissatisfied customers.
In today’s electronic age, negative word of mouth spreads at Internet speed and the result to the

 security testing
fying risks to the company from what may be

perceived as the smallest threat, gives the company the potential by which it can avoid

A risk analysis for the development company, by its nature, must assess risk costs based
on the actual risk, the size of the risk (as to the extent of cascading affects), its immediate and

term impact on the company’s sustainability, prevention costs (i.e., personnel, software
hort and long run. In the short run, upfront

cost from $5,000 -
$250,000+ for tools, plus typically 20% for annual maintenance. Additionally other expenses

into initial costs. Regarding
, depending on where software quality assurance testers are located, salaries

. Automated software
testing is a highly specialized area within the computer science field and requires extensive tools

year computer science degree. Therefore, companies

often hire automated software consultants. Consultants a
company may pay an automated testing software engineer anywhere from $60,000 to $150,000
annually plus travel and expenses. These consultants’ contracts typically run from three months
to a year depending on the project and the company
contracted for companies that have short
framework, or load and performance testing. The variation in salary is based on the software
engineer’s expertise with automated testing tools, experience in the field, educational degrees,
and the level of risk associated with the company’s product (e.g., medical supply companies such
as Baxter Health Care must, by the nature of their product and the lev
the company, hire extremely talented, competent, and experience automated test engineers).

Therefore, frontend quality assurance (QA) provides
benefit) with regard to reducing defects and c
Study after study, such as the study by Pressman (2005) “Software Engineering: A Practitioner’s
Approach,” have shown that as a defect progresses from requirements to the next phase of the
software development life cycle (SDLC), the
factor of ten at each phase of the SDLC
Technology (NIST), 80% of costs in the development stage are spent on finding and fixing
defects. Further, the NIST suggests that a preemptive approach of building security and
compliance into the frontend product reduces vulnerability and costs less in the long run
(Anonymous 2009). In other words, by the time a defect makes it through requirements, design,
development, testing, and to production, the cost of fixing the defect increases exponentially.
Early stage (i.e., R&D) specification of
likely to provide a substantial cost savings by preventing security bugs
the software application is in production. Although planning
development phase, it must be assessed and controlled throughout the products life cycle. Once
the quality control (QC) testing phase is entered, having automated tests ready to go, including
automated software security test cases, dramatically improves the ROI garnered from the testing
phase. If automated tests are developed during the SDLC as well as with each software release,
the test team will have a significant inventory of automated tests, both functional and
security. The larger the inventory of automated tests the more efficient and effective the test
phase will be in addition to securing a higher ROI
proposed:

P1a: Inclusion of frontend software

applications.
P1b: Testing of frontend software security feature

applications.

Proposed Implementation Plan

A security issue, in the QA/QC world, is viewed as a defect, but one with a very high
risk. The tester should use a risk-
architecture in mind, and they must identify risks to the application and focus on
that may be vulnerable to attack.

For some companies, in addition to frontend costs to prevent incidents, the perception of
how significant a security risk is

Journal of Technology Research

Software Security Assurance

often hire automated software consultants. Consultants are used for short-run initiative
company may pay an automated testing software engineer anywhere from $60,000 to $150,000
annually plus travel and expenses. These consultants’ contracts typically run from three months

ect and the company perceived needs. The consultants are often
companies that have short-term needs such as developing an automated testing

framework, or load and performance testing. The variation in salary is based on the software
’s expertise with automated testing tools, experience in the field, educational degrees,

and the level of risk associated with the company’s product (e.g., medical supply companies such
as Baxter Health Care must, by the nature of their product and the level of risk to the client and
the company, hire extremely talented, competent, and experience automated test engineers).

Therefore, frontend quality assurance (QA) provides significant value (i.e., cost verses
benefit) with regard to reducing defects and costs of all software, including security
Study after study, such as the study by Pressman (2005) “Software Engineering: A Practitioner’s
Approach,” have shown that as a defect progresses from requirements to the next phase of the

(SDLC), the approximate cost of fixing a defect increases by a
at each phase of the SDLC. According to National Institute of Standards and

Technology (NIST), 80% of costs in the development stage are spent on finding and fixing
defects. Further, the NIST suggests that a preemptive approach of building security and

product reduces vulnerability and costs less in the long run
(Anonymous 2009). In other words, by the time a defect makes it through requirements, design,
development, testing, and to production, the cost of fixing the defect increases exponentially.

y stage (i.e., R&D) specification of software security requirements, designing and coding are
likely to provide a substantial cost savings by preventing security bugs rather than bug fixes

application is in production. Although planning for security risks begins in the
development phase, it must be assessed and controlled throughout the products life cycle. Once
the quality control (QC) testing phase is entered, having automated tests ready to go, including

t cases, dramatically improves the ROI garnered from the testing
phase. If automated tests are developed during the SDLC as well as with each software release,
the test team will have a significant inventory of automated tests, both functional and
security. The larger the inventory of automated tests the more efficient and effective the test

securing a higher ROI over manual testing. Hence the following is

software security features reduces total cost of enterprise

Testing of frontend software security features reduces total cost of enterprise

lan

A security issue, in the QA/QC world, is viewed as a defect, but one with a very high
-based approach to software security development with

architecture in mind, and they must identify risks to the application and focus on
that may be vulnerable to attack.

n addition to frontend costs to prevent incidents, the perception of
 for that company plays a key role in whether frontend QA is

Journal of Technology Research

Software Security Assurance, Page 5

run initiatives and a
company may pay an automated testing software engineer anywhere from $60,000 to $150,000
annually plus travel and expenses. These consultants’ contracts typically run from three months

perceived needs. The consultants are often
term needs such as developing an automated testing

framework, or load and performance testing. The variation in salary is based on the software
’s expertise with automated testing tools, experience in the field, educational degrees,

and the level of risk associated with the company’s product (e.g., medical supply companies such
el of risk to the client and

the company, hire extremely talented, competent, and experience automated test engineers).
value (i.e., cost verses

security testing.
Study after study, such as the study by Pressman (2005) “Software Engineering: A Practitioner’s
Approach,” have shown that as a defect progresses from requirements to the next phase of the

cost of fixing a defect increases by a
. According to National Institute of Standards and

Technology (NIST), 80% of costs in the development stage are spent on finding and fixing
defects. Further, the NIST suggests that a preemptive approach of building security and

product reduces vulnerability and costs less in the long run
(Anonymous 2009). In other words, by the time a defect makes it through requirements, design,
development, testing, and to production, the cost of fixing the defect increases exponentially.

security requirements, designing and coding are
rather than bug fixes after

for security risks begins in the
development phase, it must be assessed and controlled throughout the products life cycle. Once
the quality control (QC) testing phase is entered, having automated tests ready to go, including

t cases, dramatically improves the ROI garnered from the testing
phase. If automated tests are developed during the SDLC as well as with each software release,
the test team will have a significant inventory of automated tests, both functional and software
security. The larger the inventory of automated tests the more efficient and effective the test

over manual testing. Hence the following is

reduces total cost of enterprise

reduces total cost of enterprise

A security issue, in the QA/QC world, is viewed as a defect, but one with a very high
based approach to software security development with

architecture in mind, and they must identify risks to the application and focus on areas of code

n addition to frontend costs to prevent incidents, the perception of
company plays a key role in whether frontend QA is

implemented. Therefore, typically, one of the first tasks to be completed in the software
development process is a risk analysis
given to performing an effective analysis of
that it is impossible to test everything in an application, including security.
software security, a test engineer must add to their current testing knowledge the mindset of a
‘hacker’ and move beyond the conventional QA
must: 1) apply conventional QA/QC testing methodology, 2) thoroughly understand what is
being tested, 3) think outside the box (i.e., maliciously about the target
attack the target software by applying malicious ideas, methods, and data, and 5) stay informed
about potential threats that might affect the testing target (Gallagher et al., 2006). To address
strategic risk through conventional analysis allows the analyst to prioritize wha
addressed according to their risk level. However, a company must obtain and maintain both
conventional security and quality assurance risk assessment measures while engaging in
unconventional thinking in order to secure the company’s fin

One effective means for visualizing the likelihood and the potential impact of a defect is
through a table format with defect likelihood on one axis (e.g., rows) and potential impact of the
defect on the other axis (e.g., columns).
on systems or critical software and recovery using a weighted risk. It is necessary to define the
weighs as to the meaning of critical, high, medium and low for each risk. See Table 1
are in the Appendix).

One security model utilized to assess risk, given credence by Certified Information
Systems Security Professionals.Com (
large is the CIA model which is an acronym for
software and data, 2) integrity – is the
and 3) availability – can authorized

In order to create a viable
functionality should be compiled. The list of entry points should include all possible means as to
how the data is used and how it might be used maliciously to cause undesirable results and
threats to critical functionality (Wright, 1994).

Once risks have been identified, the next logical step is the planning stage. Planning is a
key to success in any software endeavor. In the book, Hunting Security Bugs (Gallag
and Landauer 2006), the authors provide a
software security-testing task. The
(DFD), 2) enumeration of entry and exit points, and 3) enumeration of potential threats

According to the threat model, data flow diagrams (DFD’s) provide testers with a clear
understanding of how, where, and what data flows between
used for the entire application, or perhaps just specific functionality. Dat
concern are: personal information, account numbers, passwords, and data from anonymous
sources. Additionally, DFD’s highlight the functional areas that require specific sensitive
information, or perhaps generate explicit sensitive i

Entry points are susceptible to malicious data entering the application, and as such,
should be thoroughly tested (e.g. negative testing). Malicious data may be used to ‘unlock’ a
module, function, or method allowing an
or its data. Typical security concerns of this type are: 1) controlled access (customers and
employee business), 2) confidentiality protection (disclosure of sensitive information), 3)
integrity of data (protection from unauthorized modification), 4) non

Journal of Technology Research

Software Security Assurance

e, typically, one of the first tasks to be completed in the software
a risk analysis. Likewise, in testing software security, a high priority is

given to performing an effective analysis of software security risks. It is a generally
that it is impossible to test everything in an application, including security. To identify and test

security, a test engineer must add to their current testing knowledge the mindset of a
‘hacker’ and move beyond the conventional QA/QC testing mindset. The software
must: 1) apply conventional QA/QC testing methodology, 2) thoroughly understand what is
being tested, 3) think outside the box (i.e., maliciously about the target software

by applying malicious ideas, methods, and data, and 5) stay informed
about potential threats that might affect the testing target (Gallagher et al., 2006). To address
strategic risk through conventional analysis allows the analyst to prioritize what risks need to be
addressed according to their risk level. However, a company must obtain and maintain both
conventional security and quality assurance risk assessment measures while engaging in
unconventional thinking in order to secure the company’s financial sustainability.

One effective means for visualizing the likelihood and the potential impact of a defect is
through a table format with defect likelihood on one axis (e.g., rows) and potential impact of the
defect on the other axis (e.g., columns). Characteristics of the risk can be prioritized as to impact
on systems or critical software and recovery using a weighted risk. It is necessary to define the
weighs as to the meaning of critical, high, medium and low for each risk. See Table 1

One security model utilized to assess risk, given credence by Certified Information
Systems Security Professionals.Com (Cissp.com 2010) and the computer security community at

is an acronym for: 1) confidentiality – who has access to your
is the software functioning accurately and is the data accurate,

authorized users access the software get to the application and data
In order to create a viable software security test plan, a list of all threats to critical

functionality should be compiled. The list of entry points should include all possible means as to
how the data is used and how it might be used maliciously to cause undesirable results and

eats to critical functionality (Wright, 1994).
Once risks have been identified, the next logical step is the planning stage. Planning is a

key to success in any software endeavor. In the book, Hunting Security Bugs (Gallag
the authors provide a threat model, to assist practitioners in planning the

task. The threat model has three key parts: 1) data flow diagrams
(DFD), 2) enumeration of entry and exit points, and 3) enumeration of potential threats

model, data flow diagrams (DFD’s) provide testers with a clear
understanding of how, where, and what data flows between software components. DFD’s can be
used for the entire application, or perhaps just specific functionality. Data objects of particular
concern are: personal information, account numbers, passwords, and data from anonymous
sources. Additionally, DFD’s highlight the functional areas that require specific sensitive
information, or perhaps generate explicit sensitive information (Gallagher et al., 2006).

Entry points are susceptible to malicious data entering the application, and as such,
should be thoroughly tested (e.g. negative testing). Malicious data may be used to ‘unlock’ a
module, function, or method allowing an unauthorized user to further misuse the application and
or its data. Typical security concerns of this type are: 1) controlled access (customers and
employee business), 2) confidentiality protection (disclosure of sensitive information), 3)

ata (protection from unauthorized modification), 4) non-repudiation of data

Journal of Technology Research

Software Security Assurance, Page 6

e, typically, one of the first tasks to be completed in the software
security, a high priority is

security risks. It is a generally accepted fact
o identify and test

security, a test engineer must add to their current testing knowledge the mindset of a
software security tester

must: 1) apply conventional QA/QC testing methodology, 2) thoroughly understand what is
 or module), 4)

by applying malicious ideas, methods, and data, and 5) stay informed
about potential threats that might affect the testing target (Gallagher et al., 2006). To address

t risks need to be
addressed according to their risk level. However, a company must obtain and maintain both
conventional security and quality assurance risk assessment measures while engaging in

ancial sustainability.
One effective means for visualizing the likelihood and the potential impact of a defect is

through a table format with defect likelihood on one axis (e.g., rows) and potential impact of the
Characteristics of the risk can be prioritized as to impact

on systems or critical software and recovery using a weighted risk. It is necessary to define the
weighs as to the meaning of critical, high, medium and low for each risk. See Table 1 (all tables

One security model utilized to assess risk, given credence by Certified Information
) and the computer security community at

who has access to your
functioning accurately and is the data accurate,

get to the application and data?
security test plan, a list of all threats to critical

functionality should be compiled. The list of entry points should include all possible means as to
how the data is used and how it might be used maliciously to cause undesirable results and

Once risks have been identified, the next logical step is the planning stage. Planning is a
key to success in any software endeavor. In the book, Hunting Security Bugs (Gallagher, Jeffries,

to assist practitioners in planning the
has three key parts: 1) data flow diagrams

(DFD), 2) enumeration of entry and exit points, and 3) enumeration of potential threats.
model, data flow diagrams (DFD’s) provide testers with a clear

components. DFD’s can be
a objects of particular

concern are: personal information, account numbers, passwords, and data from anonymous
sources. Additionally, DFD’s highlight the functional areas that require specific sensitive

nformation (Gallagher et al., 2006).
Entry points are susceptible to malicious data entering the application, and as such,

should be thoroughly tested (e.g. negative testing). Malicious data may be used to ‘unlock’ a
unauthorized user to further misuse the application and

or its data. Typical security concerns of this type are: 1) controlled access (customers and
employee business), 2) confidentiality protection (disclosure of sensitive information), 3)

repudiation of data

(original data or audit controls), and 5 monitoring and auditing security process and procedures
(Gallagher et al., 2006). Exit points of particular interest include: 1) business o
those regarding security), 2) organization information (user roles, etc.), 3) process components
(including data structures), and 4) partners (and relationships) (Gallagher et al., 2006).

Once risks are assessed and identified, utilizing
application security is proposed as a best practice and preferred over
the security eggs in one basket (e.g. firewalls). The gumball model uses layers of security, much
like an onion. Due to the risk involved, the Transportation Security Administration (TSA) uses
this methodology to implement several security screenings and checks (J. Whitney Bunting
College of Business 2007). By using the gumball implementation methodology, the malicious
user is unlikely to know how many layers he or she must go through to get to what they want,
and may be more inclined to move on to another easier target. One important thing to remember
is that software security does not stop at the borders; therefore, the deep
get to their desired goal, the less likely they will be successful.

For management another strategic security decision is whether to implement computer
security at the infrastructure level or
securing computers and applications, strategic decisions should once again take a systems
approach by considering the roles of people, processes, and technology (Nagaratnam, Nadalin,
Hondo, McIntosh, and Austel, 2005). Intuitively,
role and feedback in the generally accepted (Security) Process Engineering model of:
plan – create security processes (QC the processes before implementation), 2) establish metrics
(QA, provides feedback on what metrics will work well and which may not), and Do: 1)
implement the security plan (QC tests
measure and monitor (QC, software
improve software security (QA provides statistics on
improve continuously (QC provides information on what was good, bad, and ugly).

Based on 20 plus years of experience in the quality assurance/quality control (QA/QC)
testing field and on existing data, it is proposed that the aforementioned
categories are vital to the success of a company’s business performance and should be viewed
holistically to provide a comprehensive
above-recommended frontend resources, the following is proposed.

P2: Incorporating software security features into the

in lower costs and less security risks than
the product life cycle.

It has been said that those who do not remember history are doomed to repeat it. Some

companies that have fallen victim because of the absence of
Volkswagen (loss of $260 million to an insider scam of phony currency
Bank of New York ($32 billion lost due to a processing error), hackers victimized Southwestern
Bell and other companies, Southwestern Bell alon
and add software security. The fate of these companies should be “red flags” for others. In spite
of the losses to the companies that use the product, it is obvious from previous research that the
catastrophic risk belongs to both the company that developed the software to the company that
uses the software. However, the greater loss and risk fall on the developing company.
Nevertheless, the risk exits for both. Therefore, the following are proposed:

Journal of Technology Research

Software Security Assurance

(original data or audit controls), and 5 monitoring and auditing security process and procedures
(Gallagher et al., 2006). Exit points of particular interest include: 1) business objects (especially
those regarding security), 2) organization information (user roles, etc.), 3) process components
(including data structures), and 4) partners (and relationships) (Gallagher et al., 2006).

are assessed and identified, utilizing a gumball approach for software
application security is proposed as a best practice and preferred over an approach
the security eggs in one basket (e.g. firewalls). The gumball model uses layers of security, much

e risk involved, the Transportation Security Administration (TSA) uses
this methodology to implement several security screenings and checks (J. Whitney Bunting
College of Business 2007). By using the gumball implementation methodology, the malicious

s unlikely to know how many layers he or she must go through to get to what they want,
and may be more inclined to move on to another easier target. One important thing to remember

security does not stop at the borders; therefore, the deeper the hacker must go to
get to their desired goal, the less likely they will be successful.

For management another strategic security decision is whether to implement computer
security at the infrastructure level or with security code in each application. To ensure success in

and applications, strategic decisions should once again take a systems
approach by considering the roles of people, processes, and technology (Nagaratnam, Nadalin,
Hondo, McIntosh, and Austel, 2005). Intuitively, software security testing can provide a vital
role and feedback in the generally accepted (Security) Process Engineering model of:

create security processes (QC the processes before implementation), 2) establish metrics
ck on what metrics will work well and which may not), and Do: 1)

implement the security plan (QC tests software security per implementation), and Check: 1)
software security defects and issues), and lastly, Act: 1) review and

security (QA provides statistics on software security test results), and 2)
improve continuously (QC provides information on what was good, bad, and ugly).

Based on 20 plus years of experience in the quality assurance/quality control (QA/QC)
existing data, it is proposed that the aforementioned software

categories are vital to the success of a company’s business performance and should be viewed
holistically to provide a comprehensive software security solution. Based on research as to the

recommended frontend resources, the following is proposed.

Incorporating software security features into the research and development phase
in lower costs and less security risks than developing software security features

It has been said that those who do not remember history are doomed to repeat it. Some
companies that have fallen victim because of the absence of software security include:
Volkswagen (loss of $260 million to an insider scam of phony currency-exchange transactions),
Bank of New York ($32 billion lost due to a processing error), hackers victimized Southwestern
Bell and other companies, Southwestern Bell alone reportedly spent $370,000 to repair programs

security. The fate of these companies should be “red flags” for others. In spite
of the losses to the companies that use the product, it is obvious from previous research that the

risk belongs to both the company that developed the software to the company that
uses the software. However, the greater loss and risk fall on the developing company.
Nevertheless, the risk exits for both. Therefore, the following are proposed:

Journal of Technology Research

Software Security Assurance, Page 7

(original data or audit controls), and 5 monitoring and auditing security process and procedures
bjects (especially

those regarding security), 2) organization information (user roles, etc.), 3) process components
(including data structures), and 4) partners (and relationships) (Gallagher et al., 2006).

software
approach of putting all of

the security eggs in one basket (e.g. firewalls). The gumball model uses layers of security, much
e risk involved, the Transportation Security Administration (TSA) uses

this methodology to implement several security screenings and checks (J. Whitney Bunting
College of Business 2007). By using the gumball implementation methodology, the malicious

s unlikely to know how many layers he or she must go through to get to what they want,
and may be more inclined to move on to another easier target. One important thing to remember

er the hacker must go to

For management another strategic security decision is whether to implement computer
To ensure success in

and applications, strategic decisions should once again take a systems
approach by considering the roles of people, processes, and technology (Nagaratnam, Nadalin,

security testing can provide a vital
role and feedback in the generally accepted (Security) Process Engineering model of: Plan: 1)

create security processes (QC the processes before implementation), 2) establish metrics
ck on what metrics will work well and which may not), and Do: 1)

security per implementation), and Check: 1)
security defects and issues), and lastly, Act: 1) review and

security test results), and 2)
improve continuously (QC provides information on what was good, bad, and ugly).

Based on 20 plus years of experience in the quality assurance/quality control (QA/QC)
software security

categories are vital to the success of a company’s business performance and should be viewed
ed on research as to the

research and development phase results
y features later in

It has been said that those who do not remember history are doomed to repeat it. Some
security include:

exchange transactions),
Bank of New York ($32 billion lost due to a processing error), hackers victimized Southwestern

e reportedly spent $370,000 to repair programs
security. The fate of these companies should be “red flags” for others. In spite

of the losses to the companies that use the product, it is obvious from previous research that the
risk belongs to both the company that developed the software to the company that

uses the software. However, the greater loss and risk fall on the developing company.

P3a: Inclusion of software security feature

catastrophic financial impact on the company that develops the software.
P3b: Inclusion of software security feature

catastrophic financial impact on the client.

CONCLUSION AND MANAGERIAL IMPLICATIONS

Although research exists in automated software testing, the benefits of a systems

approach, relative to early production development and life cycle testing have received little
attention by academics or practitioners.
security testing can be ruinous to the
recognized that software application security is one of the greatest concerns of many software
organizations and yet one of the least understood and implemented testing tasks.
security testing is very different from functional or load
a domain of expertise far beyond conventional testing methods and practices (Gallagher et al.,
2006). However, the benefits of the
through frontend of mainstream of the QA/QC testing phase of the SDLC is of foremost
importance in averting security risks across many types of the
Nevertheless, building security into the fron
forgotten throughout the product
cost associated with application software security, as well as traditional software vulnerabilities.

To fully investigate the propositions brought forth in this paper, interviews should be
conducted across industries, companies, managers, and software engineers. Findings from these
interviews could be used to create an appropriate survey instrument to capture a lar
The full investigation of the propositions is expected to add value to strategic management
decision making by revealing the extent of the benefits of life cycle testing.

REFERENCES

Bhagwati, J. (2007). In defense of globalization
University Press.

Cissp (2010). Home page. Retrieved September 10, 2010, from
Gallagher, T., Jeffries, B., & Laudauer

Press.
Homans, G. (1961). Social behavior: Its e

World.
J. Whitney Bunting College of Business, Georgia College and State University

Workshop for computer and Information Security.
Lind, E., Tyler, A., & Tyler, T. (1988

Plenum.
Kotler, P. & Armstrong, G. (2011)

Hall.
McGraw, G. (2004). Software security testing.

Journal of Technology Research

Software Security Assurance

security features into the enterprise application reduces the risk of
catastrophic financial impact on the company that develops the software.

security features into the enterprise application reduces the ris
catastrophic financial impact on the client.

CONCLUSION AND MANAGERIAL IMPLICATIONS

Although research exists in automated software testing, the benefits of a systems
approach, relative to early production development and life cycle testing have received little
attention by academics or practitioners. The cost of ignoring a systems approach to life cycle

to the developing company and/or the customer. It is further
application security is one of the greatest concerns of many software

one of the least understood and implemented testing tasks.
security testing is very different from functional or load-performance testing and as such requires
a domain of expertise far beyond conventional testing methods and practices (Gallagher et al.,

the inclusion of software security testing relative to cost savings
through frontend of mainstream of the QA/QC testing phase of the SDLC is of foremost
importance in averting security risks across many types of the software applications.
Nevertheless, building security into the frontend does not mean that security issues can be
forgotten throughout the product life cycle. However, this does have the potential to reduce the
cost associated with application software security, as well as traditional software vulnerabilities.

nvestigate the propositions brought forth in this paper, interviews should be
conducted across industries, companies, managers, and software engineers. Findings from these
interviews could be used to create an appropriate survey instrument to capture a lar
The full investigation of the propositions is expected to add value to strategic management
decision making by revealing the extent of the benefits of life cycle testing.

defense of globalization: With a new afterworld. New York:

Home page. Retrieved September 10, 2010, from http://www.cissp.co
Laudauer, L. (2006). Hunting security bugs. Washington:

Social behavior: Its elementary forms. New York: Harcourt, Brace, and

J. Whitney Bunting College of Business, Georgia College and State University. (2007)
puter and Information Security. (September): Macon, Georgia.

1988). The social psychology of procedural justice

2011). Marketing an introduction. 10th Ed. Massachusetts: Prentice

Software security testing. The IEEE Computer Security Society

Journal of Technology Research

Software Security Assurance, Page 8

into the enterprise application reduces the risk of
catastrophic financial impact on the company that develops the software.

into the enterprise application reduces the risk of

Although research exists in automated software testing, the benefits of a systems-testing
approach, relative to early production development and life cycle testing have received little

he cost of ignoring a systems approach to life cycle
. It is further

application security is one of the greatest concerns of many software
one of the least understood and implemented testing tasks. Software

performance testing and as such requires
a domain of expertise far beyond conventional testing methods and practices (Gallagher et al.,

curity testing relative to cost savings
through frontend of mainstream of the QA/QC testing phase of the SDLC is of foremost

applications.
tend does not mean that security issues can be

does have the potential to reduce the
cost associated with application software security, as well as traditional software vulnerabilities.

nvestigate the propositions brought forth in this paper, interviews should be
conducted across industries, companies, managers, and software engineers. Findings from these
interviews could be used to create an appropriate survey instrument to capture a larger sample.
The full investigation of the propositions is expected to add value to strategic management

afterworld. New York: Oxford

http://www.cissp.com.
Washington: Microsoft

Harcourt, Brace, and

(2007).
(September): Macon, Georgia.

ustice. New York:

. Massachusetts: Prentice

The IEEE Computer Security Society: 32-36.

Nagaratnam, N., Nadalin, A., Hondo,
application security: From modeling to managing secure applications.
44, 847-867.

Newswire (2010) IBM acquires Ounce Labs, Inc.: new capabilities extend IBM’s application
security and compliance offerings
July 28). PR Newswire. Retrieved August 25, 2010, from http://www
03.ibm.com/press/us/en/pressrelease/27971.wss.

Pressman, R. (2005), Software Engineering: A Practitioner’s Approach
York, NY.

Tax, S., Brown, S., & Chandrashekaran
experiences: Implications for relationship marketing.

Wright, M. (1994). Protecting information: Effective security controls.
24-28.

APPENDIX

Table 1 Risk: Likelihood and Impact of Defect

Weighted Risk: C = Critical, H = High, M = Medium, or L = Low

Likelihood

Unavoidable
Likely
Rare

Journal of Technology Research

Software Security Assurance

Hondo, M., McIntosh, M., & Austel, P. (2005). Business
application security: From modeling to managing secure applications. IBM Systems Journal,

IBM acquires Ounce Labs, Inc.: new capabilities extend IBM’s application
security and compliance offerings – help lower risk and costs of software delivery. (2009,
July 28). PR Newswire. Retrieved August 25, 2010, from http://www-

.ibm.com/press/us/en/pressrelease/27971.wss.
Software Engineering: A Practitioner’s Approach. McGraw Hill: New

Chandrashekaran, M. (1998). Customer evaluations of service complaint
Implications for relationship marketing. Journal of Marketing, 62

. Protecting information: Effective security controls. Review of Business,

Table 1 Risk: Likelihood and Impact of Defect

Weighted Risk: C = Critical, H = High, M = Medium, or L = Low

Impact

Catastrophic Damaging Annoyance

C H M
C H L
H M L

Journal of Technology Research

Software Security Assurance, Page 9

. Business-driven
IBM Systems Journal,

IBM acquires Ounce Labs, Inc.: new capabilities extend IBM’s application
help lower risk and costs of software delivery. (2009,

. McGraw Hill: New

evaluations of service complaint
, 62, 60-76.

Review of Business, 6,

Weighted Risk: C = Critical, H = High, M = Medium, or L = Low

Annoyance

