
Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 1

Visual teaching model for introducing programming languages

Ronald Shehane

Troy University

Steven Sherman

Troy University

ABSTRACT

 This study examines detailed usage of online training videos that were designed to

address specific course problems that were encountered in an online computer programming

course. The study presents the specifics of a programming course where training videos were

used to provide students with a quick start path to learning a new programming language in their

coursework. The videos addressed common learning challenges with integrated development

environments (IDE) to include the following areas: structure and menu options, program code

and structure, compile option, execution of program code, debugging activities, file organization

and use, and output concerns. The study uses an analysis of problems encountered in using new

programming languages to define the subjects that the video training should address. The study

is expected to provide a guide for professional teaching practice in introducing computer

programming and is expected to fill a void in research literature concerning the specific aspects

of programming courses that hinder computer program learning.

Keywords: Computer Programming, Teaching Programming, Online Learning, Video

Instruction, Computer Science Education

Copyright statement: Authors retain the copyright to the manuscripts published in AABRI journals.

Please see the AABRI Copyright Policy at http://www.aabri.com/copyright.html.

http://www.aabri.com/copyright.html

Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 2

INTRODUCTION

 Programming is an important part of our culture. The effects of programming are widely

experienced throughout society in a multitude of social, work-related, and leisure software

applications (Wright, G.A., Rich, P., & Leatham, K.R., 2012). Due to the importance and broad

influence of programming, the efficient and effective teaching of the subject is worthy of study

and improvement. One of the most challenging aspects of any information systems or computer

science curriculum involves helping students learn the concepts of computer programming

(Sengupta, 2009; Saeli et al., 2011). The task involves many complexities including skill

development, different learning styles, helping students transition from a problem statement to

algorithmic logic, developing programming code from that logic, debugging and resolving the

program code to produce a working program that meets the problem requirements (Hadjerrouit,

2008; Taylor 2007). This learning process is even more challenging when students are also being

introduced to a new programming language and development interface. Under these

circumstances, learning time is often at a premium and any approach that can assist a student

obtain a quick start in learning the basics of the new language and its interface give the student

an advantage and help avoid initial student confusion that can hamper achieving student learning

goals (Sengupta, 2009). Research findings indicate that programming students obtain their

knowledge and skills from learning activities that are primarily outside the classroom, which led

the authors to surmise that new approaches in pedagogy are more promising for achieving

learning goals in programming (McDougall & Boyle, 2004).

 Thomas Edison was quoted as saying, “It is possible to teach every branch of human

knowledge with the motion picture” (Reiser, 1987, p. 11). However, since Edison’s statement,

motion pictures (videos) and other digital technologies have failed to be fully utilized in teaching

(Karsenti & Collin, 2011). However, research has indicated that visual approaches to teaching

programming have resulted in faster comprehension and application of programming languages

(Naharro-Berrocal, Pareja-Flores, Urquiza-Fuentes, & Velazquez-Iturbide, 2002). Baecker,

DiGiano, & Marcus, (1997) found that visual teaching approaches were particularly effective for

student comprehension of debugging tasks. Karsenti & Collin (2011) discussed the effectiveness

of online videos for the professional development of teachers. The videos demonstrated live

recordings of classroom activities to teacher trainees to supplement their classical teaching

material. Karsenti & Collin (2011) found that the use of these videos provided practical training

that enhanced teacher’s understanding and application of classroom techniques, and also

provided them with the flexibility to access videos as many times as desired, any time, and from

any location. Students are often hesitant to ask a teacher to repeat something more than once.

However, they appear to be comfortable repeating the use of a video multiple times until they

gain a full understanding of what is being presented. The availability and easy access to the

videos “enabled learning through modeling and imitation” (Karsenti & Collin, 2011). Lashley

(2005) found that the training videos were an effective teaching aid for technical and clinical

skills. Feedback provided to Lashley (2005) indicated that the constant online availability of the

videos provided students the ability to better schedule their pace of learning. Nicholson &

Nicholson (2010) reported that the application of visual digital media to a course is beneficial to

student learning of Information Technology (IT) material and results in improved overall student

satisfaction with the learning process. The Nicholson & Nicholson study reported a reduction in

the number of students requiring additional reviews and explanation of previously presented

material in an IT course of study.

Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 3

 Research literature has demonstrated many of the advantages of using multimedia

material. In particular, results from Sankey, Birch, & Gardiner (2011) indicated that students

experienced improved comprehension, understanding, and retention of content. They

recommended that future research might involve more complex concepts as well as an

exploration of the impact on distance learning. This study was formulated to pursue those goals

by examining the detailed usage of visual teaching to address specific course problems in

teaching computer programming through distance learning. This study discusses an example

course where a visual teaching approach was used by the authors to provide their programming

students a quick start path to learning and applying new programming languages in their

coursework.

 The remainder of this paper is organized as follows: A discussion of the problems being

encountered by the students in the course. A discussion of the visual teaching approach used to

assist students in learning and applying a new programming language. A discussion of the results

of using the new visual teaching approach will be presented. Following this, the conclusions and

future research implications of the study will be discussed.

PROBLEM

 In their statement on faculty responsibility for learning goals, AACSB places the

responsibility squarely upon the shoulders of instructors in defining learning goals, assessing

student’s achievement of those goals, and improving their course content and approach based on

their assessment. AACSB goes on to describe how a courses content needs to be continually

reviewed to identify “learning experiences” that might be added to a course to enhance a

student’s capability to attain and sustain a course’s learning goals.

 A review of one of the introductory programming courses, taught by the authors,

indicated that students were struggling with using the programming development interface and

debugging activities on assignments early in the course which was not only affecting their

efficiency in learning the new language, but represented a serious impediment to their

achievement of the learning goals of the course. An analysis of the questions asked by students

when compared to assessment results revealed areas of misunderstanding that students were

encountering at the beginning of the course that appeared to carry forward for the remainder of

the course. This was one of the root causes of student’s failing to achieve the learning goals.

The key problem areas that surfaced dealt with a student’s ability to fully grasp the programming

interface and debugging tasks early in the course. The authors had provided text and screen

captured graphic presentations in previous classes that showed students how to use the interface

and debugging tools of the language during the first weeks of the class. However, their analysis

indicated that there was still a consistent pattern of misunderstanding indicated by student

questions and assignment failures. Table 1 presents the results of the analysis that shows the

problems faced by students during the early weeks of the course and examples of the types of

difficulties being encountered.

SOLUTION

 The authors decided to radically change the teaching approach to provide a more visually

enhanced and active presentation of the language, interface, and debugging task involved. It was

decided to provide archived application sharing videos, with narration, that showed the use of the

Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 4

programming interfaced that used complete programming examples and debugging activities.

The videos were archived to enable the students to access them at any time from any location via

an online course teaching platform. The tool used to create the application sharing video was

Wimba Classroom Application Share using a Blackboard teaching platform. The videos were

available to students to refer to as many times as desired as they performed their weekly required

programming assignments. The videos were an integral part of an active learning approach that

motivated programming practice and application outside normal classroom activities (Hawi,

2010).

 The areas selected to be addressed by the videos were those indentified by the analysis of

student questions and programming assessment shortfalls indicated in Table 1 and were as

follows:

Menu Options and Structure of IDE

 The narrated video began with an overview of the IDE and the various menu options

available. A quick narrated overview of the various panels available in the IDE to include the

editing panel and its use, compile results panel and the overall order of its use, and menu options

and their overall function was discussed and highlighted on the video to help students better

understand the overall order of use of the options. The overall functioning of the IDE and its

purposes and why it is useful to the student was also presented to personalize the learning

experience for the student and help motivate their interest.

Program Code and Structure

 The video then demonstrated how to use the IDE to retrieve a programming file. The

content of the program was then briefly explained as it appeared in the editing panel. The

purpose of the individual commands was explained and an overview of their placement in the

structure was covered. The video then demonstrated how to add additional programming

commands into the overall structure using the editor. The precedence of the commands and their

logical flow were also demonstrated and explained. The students were then shown how the IDE

highlighted different commands and user defined variables in different colors to assist students in

better understanding the structure and use of the programming code (Panell, 2003).

Compile Option

 The video then demonstrated to the student the use of the compile option and the results

displayed in the compiler panel. The first demonstration showed a successful compile and what

the student could expect to see. Changes were then made to the program, in the editing panel, to

produce a syntax error that was fully highlighted for the student and explained so they could

understand an unsuccessful compile. The program was then re-compiled to show the types of

error messages that students could expect in the compiler panel for different programming

situations. Common types of errors were also created to show the student what they might expect

to encounter during the first few weeks of programming. With each compiler error, students

were shown what to do with the results and how to make corrections to the example program and

recompile until workable.

Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 5

Animated Execution of Program Code

 The students were then shown how to execute the program in a step-by-step animated

mode (Shehane, Huan, Ali, 2011). This approach permitted the student to see each command

executed along with an explanation by the instructor of the flow of the program and purpose of

each command. The one step execution of the entire program was also shown and how it could

be efficiently used. The execution of each command was also explained in terms of the overall

structure and flow of the code so that students could understand the commands within the

context of the programs purpose. During the program execution video, the instructor introduced

commonly encountered errors that were designed to cause the program to fail during execution to

assist student in learning the difference between compiler syntax errors and execution errors. It

was stressed to the students that a program can compile successfully and still not execute

properly due to overall logic and flow problems in the program. This was designed to overcome

a common student misunderstanding about execution failure.

Debugging Activities and Monitoring Variable

 The instructor demonstrated how to debug program code with an example program in this

video. A step-by-step animated execution of the program was used to demonstrate debugging.

The program used was designed to reveal the variable values resulting from the execution of

each command so that students could see the effect on the variable contents as each command

was executed. It was then demonstrated how the IDE could be used to report of the values as the

program was executed and how this could be used to identify execution logic errors, where

certain commands failed to produce the expected results. This demonstration was designed to

improve the overall student efficiency and effectiveness in spotting and resolving error

conditions.

File Organization and Use

 A video was made to show use of the IDE in saving, retrieving, and organizing

programming files so that students would be better able to perform their program retrievals and

submissions. The video also showed an example of each file type to include the source code,

object code, and executable file and how to distinguish them in the file explorer.

Making Correction to Output and Format

 The narrated video also demonstrated the use of the IDE output window to assess the

suitability of the results produced by the program and the format of output reports compared with

problem requirements. During this video, students were shown how to spot and correct

formatting and alignment problems within the output and how to recognize the programming

logic and commands that produced the various out results.

Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 6

CONCLUSIONS AND FUTURE RESEARCH

 The overall results of implementing the new video presentation approach of the

programming IDE and debugging tools was a decrease in students programming questions

during the first three weeks of the course by 72% and an improvement in students programming

assessment average scores by 14% during the first three weeks of the course.

 The results of the study fill a current void in research literature in terms of presenting the

detailed areas of a computer programming course that can be addressed by video to resolve

common misunderstandings. The study is expected to contribute to teaching practice in

information systems and computer science.

 A review of the results of the study indicated additional benefits and advantages resulted

from introducing the new visual teaching approach to the course. The following are advantages

of the teaching approach that were found:

 The video was available 24/7 for students use and Blackboard usage statistics and course

access statistics indicated that students typically referred to the video multiple times

during the course.

 A follow-up analysis of questions submitted in courses indicated that the problem areas

addressed had successfully eliminated over 85% of the recurring questions in each

category.

 A follow-up review of the quality of early programming assignments indicated that the

visual teaching approach improved student’s success in developing code, free from

compile errors, and free from execution problems.

 A follow-up review of the coding of early programming assignments indicated that the

new teaching approach enabled students to identify compiler problem areas with their

code and enhanced their ability to make incremental changes to their programs to correct

the problems.

 Areas for future research were identified as follows:

 The specific tool used to create the application sharing videos and the program language

being taught is not expected to affect the results of this study, but this assumption should

be the subject of future study.

 A rigorous student perception study, utilizing a student control group, is needed to better

evaluate the usefulness of the teaching approach.

Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 7

REFERENCES

AACSB. (2013) Assurance of Learning: Faculty Responsibility for Learning Goals Retrieved

August 6, 2013, from

http://www.aacsb.edu/accreditation/business/standards/aol/learning_goals.asp

Baecker, R., DiGiano, C., & Marcus, A. (1997). Software visualization for debugging.

Communications of the ACM, 40(4), 44-54.

Hadjerrouit, S. (2008). Towards a Blended Learning Model for Teaching and Learning

Computer Programming: A Case Study. Informatics in Education, 7(2), 181–210.

Hawi, N. (2010). The exploration of student-centered approaches for the improvement of

learning programming in higher education. US-China Education Review, 7(9), 47-57.

Karsenti, T. & Collin, S. (2011). The impact of online teaching videos on Canadian pre-service

teachers. Campus-Wide Information Systems, 28(3), 195-204.

Lashley, M. (2005). Teaching Health Assessment in the Virtual Classroom. Journal of Nursing

Education, 44(8), 348-350.

McDougall, A. & Boyle, M. (2004). Student Strategies for Learning Computer Programming:

Implications for Pedagogy in Informatics. Education and Information Technologies 9(2),

109–116.

Naharro-Berrocal, F., Pareja-Flores, C., Urquiza-Fuentes, J., & Velazquez-Iturbide, J. A. (2002).

Approaches to comprehension-preserving graphical reduction of pro-gram visualizations.

Paper presented at the Proceedings of the 2002 ACM symposium on applied computing.

Panell, C. (2003). Teaching computer programming as a language. ProQuest Education Journals

Tech Directions; 62 (8), 26-27.

Reiser, R.A. (1987). “Instructional technology: a history”, in Gagne, R.M. (Ed.), Instructional

Technology: Foundations, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 11-48.

Saeli, M., Perrenet, J., Jochems, W.M.G., & Zwaneveld, B. (2011). Teaching Programming in

Secondary School: A Pedagogical Content Knowledge Perspective. Informatics in

Education, 2011, Vol. 10, No. 1, 73–88

Sankey, M.D., Birch, D., & Gardiner, M.W. (2011). The impact of multiple representations of

content using multimedia on learning outcomes across learning styles and modal

preferences. International Journal of Education and Development using Information and

Communication Technology 7(3), 18-35.

Sengupta, A. (2009) CFC (Comment-First-Coding) – A simple yet effective method for teaching

programming to information systems students. Journal of Information Systems

Education, 20(4), 393-399.

Shehane, R.F.; Huan, X.; & Ali, A. (2011).Teaching computer science courses in distance

learning. Journal of Instructional Pedagogies, 6, 47-60.

Taylor, A.P.R. (2007). Programming for the Internet and experiential learning: A new approach

incorporating a constructed world. International Journal of Technology and Design

Education, 17(2), 217 – 229.

Wright, A., Rich, P., & Leatham, K.R. (April 2012). How Programming Fits With Technology

Education Curriculum. Technology and Engineering Teacher, 3-9.

Journal of Instructional Pedagogy Volume 14 – March, 2014

Visual teaching model, Page 8

TABLE 1

Problem Analysis

Problem Areas Category Example Problems

Structure and Menu

Options

Misunderstanding of Edit, Compile,

and Results Panels

Cannot determine whether program

compiled.

 Overall Use of Each Option Changes to the program were made,

but results were still the same.

 Purpose Behind IDE and Importance

to Student

The order followed did not produce

results.

Program Code and

Structure

Program Levels Sections of code were overlooked.

 Order of Commands Precedence of commands was

ignored.

 Color Coding of Commands Confusion was encountered for user

defined versus program code.

Compile Option Successful Compile Confusion about contents of

compile panel.

 Unsuccessful Compile Confusion about contents of

compile panel after unsuccessful

compile.

 Detecting Compile Errors Confusion about interpreting error

messages.

 Correction of Errors Confusion concerning how to

proceed.

Execution of Program

Code

Execution Methods Misunderstanding of methods of

execution available and step-by-

step option.

 Execution Order Misunderstanding of order of

execution within program context.

 Execution Errors Detecting execution error versus

syntax errors.

Debugging Activities Detecting Flawed Logic Lack of understanding of step-by-

step and variable contents

monitoring.

File Organization and

Use

Unsuccessful Use of File Option Failure to save files in an organized

manner.

 File Type Use Misunderstanding of different files

produced including source code,

object code, and executables.

Output Concerns Output File Format Misunderstanding of how to align

columns and produce values.

