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ABSTRACT 

 

The pourpose of this paper is to propose the Stock Market (SM) volatility estimation 

method based on the Higher Order Cumulant (HOC) function, and to apply it to the cases when 

stock market returns have a non Gaussian distribution and/or when a distribution of SM 

innovations is unknown. The HOC functions of the third and fourth order are used not only as a 

means for non Gaussian model testing but also as sufficient statistics, which is indispensable in 

estimating the AR and MA parameters of the squared SM returns. The empirical analysis is 

based on the daily closing values of the SMI, DJIA, SP500, DAX, FTSE100, NASDAQ and BSE 

indexes. The time horizon includes the period between March 30, 2010 and February 6, 2013. 

ARMA parameter estimation is performed by using the well known GARCH algorithm from 

Eviews, as well as the estimation algorithm based on higher order cumulant (HOC) functions, 

which is introduced in this paper. Ultimately, the Hinich portmanteau statistics are used to test 

the adequacy of ARMA-GARCH and ARMA –HOC models. The research outcome 

demonstrates that ARMA-HOC model produces independent innovations and captures the model 

dynamics while the ARMA -GARCH model fails to do it. All data are taken from Bloomberg. 
 

Keywords: Volatility modeling, GARCH model, ARMA-HOC model, Non Gaussian 

innovations, Higher Order Cumulant function, Swiss Market Index. 
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1. INTRODUCTION 

  Ever since the GARCH (Generalized Autoregressive Conditional Heteroschedastic) 

paradigm started dominating the field in the area of Stock Market (SM) volatility forecasting, a 

cohesive body of GARCH literature has encapsulated many of the aspects of its ability to capture 

the Stock Market (SM) stylized facts. Unfortunately, the GARCH paradigm, led to deeply 

embedded illusions of its ability to produce consistent and efficient estimates of the stock market 

volatility. The unfavorable issues of the GARCH volatility prediction are progressively 

increasing at each step of its application: the erroneous assumption that standardized residuals 

are independent and identically distributed; the failure of the GARCH model variants to capture 

the stylized facts coupled to stock market returns when their innovations do not give evidence for 

assumption of any of the known probability distributions; the pre-set GARCH idea to use 

prediction of squared returns as a proxy for the volatility forecast and to estimate it by using only 

the second order moments – autocorrelation function of SM squared returns and ultimately 

kurtosis. 

Today the state of art of SM volatility forecasting improvement offers two statistically 

different paths, which lead either to a new analytical forms of the GRACH model or to the 

discovery of a new model testing method based on kurtosis and autocorrelation function. 

The first research direction has been widely explored in the last three decades by hold-outs of the 

GARCH paradigm. Insofar, the popular ways of comparing volatility models have been: to 

compare Mean Forecast Errors (MFE) or to use AIC or BIC criteria. While numerous studies 

have compared the forecasting abilities of the historical variance and GARCH models, no clear 

winner has emerged. In a scrupulous review of 93 such studies, Poon and Granger (2003) 

reported that 22 find that historical volatility forecasts future volatility better out-of-sample, 

while 17 studies find that GARCH models forecast better. Brooks, Burke and Persand (2001) 

used DJ composite daily data to test in- and out-of-sample forecasts obtained with GARCH, 

EGARCH, GRJ and HS (historical volatility) models. The coefficient of determination (R
2
) 

achieved was around 25% for each of the models. 

Ideally, a good volatility model should have the capacity to capture decreasing 

autocorrelations of squared observations. Carnero, Peña & Ruiz (2004) compared the 

Autoregressive Stochastic Volatility (ARSV) model and the GARCH model using the kurtosis –

autocorrelation relationship in squared returns as their benchmark. No conclusive results were 

obtained. 

Malmsten &Teräsvirta (2004) discussed the stylized facts of SM returns in connection 

with the GRACH and ARSV model. Their paper contains an application of a novel method of 

obtaining confidence regions for the kurtosis-autocorrelation relationship. The exact 

representation of kurtosis is derived for both GARCH and stochastic volatility models. It was 

demonstrated both analytically and empirically that the GARCH (1, 1) model with high starting 

autocorrelation of squared returns was observed in a large number of financial series. 

Thavaneswaren at all (2009) derived the kurtosis of the AR model with random coefficients and 

GARCH intonations. It was also found that “the first-order autocorrelations”, given the certain 

kurtosis, are lower in the ARSV than the EGARCH model with normal errors. This may, at least 

to a certain extent, explain the fact the ARSV (1) model seems to fit the data better than its 

EGARCH or GARCH counterpart. However, the skewness of the squared returns which is 

frequently encountered in stock market variables cannot be reproduced by any of the existing 

volatility models. 
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The conclusion that emerges from those considerations, which are largely based on 

results about the kurtosis structure of these models, is that “none of the models dominates the 

others when it comes to reproducing stylized facts in typical financial time series”. By 

comparing the difference between the theoretical GARCH kurtosis and the estimated kurtosis, it 

is demonstrated how t- distribution assumption adds to the flexibility of the GARCH model and 

helps the model parameters to reproduce, in a better way, but not completely, the stylized fact of 

high kurtosis and relative low autocorrelations of squared observations. Partial empirical 

improvements are made only when considering t or GED distribution of squared returns. 

Starica (2003) investigated how close the simple endogenous dynamics imposed by the 

GARCH (1, 1) process is to the true dynamics of returns of the stock market indexes, the 

Standard & Poors 500 (S&P 500) and the Dow Jones Industrial Average (DJIA) index. The 

results lead to the rejection the hypothesis that a GARCH (1, 1) process is the true data 

generating process of the longer sample of returns of the S&P 500 stock market index.  

Both volatility clustering and conditional non-normality can induce the leptokurtosis 

which is typically observed in financial data. Bai, Russell & Tiao (2003) found theoretically and 

empirically that, for GARCH and AR Stochastic Volatility models, volatility clustering and non-

normality contribute interactively and symmetrically to the overall kurtosis of the series of 

squared returns. 

The second path of the SM volatility research was initiated by Hinich (1996). He 

introduced the rigorous model testing criteria: H test. The test is in fact the extension of the Box-

Pierce test (1970 a) and is based on third order sample cumulants, called bicorrelations by Hinch. 

Additionally, Lim, Hinich and Liew (2006) employed the Hinich portmanteau bicorrelation test 

as a diagnostic tool to determine the adequacy of the GARCH models for eight Asian stock 

markets. They showed that that the null hypothesis of the independent innovations is strongly 

rejected. Their findings question the applicability of the OLS estimation method, which is 

consistent if the error time series {et} is a martingale difference, which happens only if the third 

order triple correlations are zero for all lags except for the lag (0,0). 

This article is concerned only with the second pathway of the volatility research. It states 

that, insofar the sufficient statistics for ARMA- GARCH parameter estimation is considered to 

be the autocorrelation function with addition of the kurtosis solely; so far the existing parameter 

estimation methods will not be applicable to non Gaussian returns and will not produce 

independent innovations. Accordingly it proposes a paradigm change focused on ARMA model 

parameter estimation instead only on model testing as has been done so far. 

In general, the introduction of a new paradigm is very difficult. Since paradigms are so 

hard to change, there is a natural tendency to dismiss all evidence that does not fit into the 

existing framework. However the evidence and experiences with the inadequacies of GARCH 

model, which have multiplied themselves in the last decade and the advances in using higher 

order cumulants in digital signal processing (Al-Smadi and Wilkes, 2002), wireless 

communications, speech processing and in EEC modeling (Goshvarpour at all 2012), made it 

possible to develop a cumulant based approach to the non Gaussian volatility model building. 

The aim of the paper is twofold: to trigger the paradigm shift by stressing the importance 

of applying the third and the forth order cumulant functions for the ARMA-HOC parameter 

estimation and to show that ARMA- HOC estimation method captures the SM stylized facts 

better while producing innovations which are independent. Both HOC-ARMA and GARCH –

ARMA parameter estimations are obtained by using a daily closing prices of the SMI, DJIA, 

SP500, DAX,  FTSE100, NASDAQ and BSE indexes, for the period between March 30, 2010 
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and Feb.6, 2013, taken from Blumberg. Ultimately, the Hinich test , which are based on the third 

and the fourth order cumulants of the ARMA innovations, are used to show that the proposed 

HOC based estimation method does capture the SMI index stylized facts and produces 

independent forecasting errors. 

The paper is organized as follows: The ARMA –GARCH and the ARMA HOC models 

are theoretically described in Section 2. The higher order cumulant functions are defined in the 

same section and used to introduce an extension of the Yule –Walker method which can be 

applied in the case of non-Gaussian AR parameter estimation. The same section presents a 

cumulant based MA-HOC parameter estimation method. Further on, in Section 3 it is tested 

whether the hypothesis that states that the HOC-ARMA parameter estimation is more successful 

in extracting the information about the stock market stylized facts, contained in the squared 

returns. Since the stylized facts are not seen only in autocorrelation function, kurtosis and 

skewness of squared returns, but also in the third and the fourth order cumulant functions 

mentioned above, the fourth section presents the empirical ARMA-GARCH and ARMA HOC 

models and their residual analysis. It is shown that the parameter estimation, based on HOC 

functions, flatten, more successfully, the second, the third and the fourth order cumulant 

functions of the squared returns. The final section presents the conclusion and suggestions for 

further research. 

2. THE PROBLEM AND THE MODEL  

Statistical properties of stock market returns, which are common across a wide range of 

developed stock markets and time periods, are called stylized facts. Stylized statistical properties 

of asset returns of developed markets are analyzed empirically and subsequently summarized by 

Cont (2001). 

The fact that market returns are often characterized by volatility clustering, which means 

that periods of a high volatility are followed by periods of a high volatility and periods of a low 

volatility are followed by periods of a low volatility, implies that the past volatility could be used 

as a predictor of the volatility in the next periods. As an indication of volatility clustering, 

squared returns often have significant autocorrelations and consequently can be modeled by 

using the well known GARCH model. 

 

2.1. The GARCH-ARMA model building  

 

Let et denote a discrete time stationary stochastic process. The GARCH (p, q) process is 

given by the following set of equations  

 

rt= log(pt/pt-1)                                                                                                                                 (1) 

rt = x(k)g(k) + et                                                               (2) 

et = vt√ht 

et/t-1 ≈ N(0, ht)                                                                             (3) 

ht = 0 + ∑ αi
p
1 e2

t-i+∑ βjht−j
q
1                                                    (4) 

 
where {pt} represents stock prices; {rt} represents random returns; {et} represents de-trended 

returns; x(k) is a vector of explanatory variables; g(k) is a vector of multiple regression 

parameters; ht is the conditional volatility; i is autoregressive; and j is the moving average 
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parameter as related to the squared stock market index residuals. An equivalent ARMA 

representation of the GARCH (p, q) model (Bollerslev, 1982, pp. 42-56): is given by: 

 

et
2
 = 0 + ∑ (αi

p
1  + i)e

2
t-i + t -∑  β

q
1 jt-j                                                   (5) 

 

where t = et
2 - ht and, by definition, it has the characteristics of (i.i.d) white noise. ht is known as 

GARCH variance. 

In this context, the GARCH (p, q) volatility model is simply an Autoregressive Moving 

Average -ARMA (p, q) model in et
2
 driven by i.i.d noise t, which is Gaussian random variable. 

It is worth stressing that the GARCH variance, ht, in time series analysis, appears to be merely an 

estimate of the squared de-trended SM returns et
2
. 

The best known Gaussian ARMA model building methodology is known to be the Box-

Jenkins (B-J) iterative methodology, which includes three steps: model order determination, 

parameter estimation and model testing (Box and Jenkins, 1970). 

The B-J methodology assumes that each stationary time series can be treated as an output from 

the AR(p), MA(q) or ARMA (p,q) filter, which has as an input uncorrelated and Gaussian 

innovations, known as "white noise" {}. 

The ARMA model has the following form: A(Z) et
2= B(Z)* t, where Z is a backward shift 

operator:  

et-1
2=Z-1

 et
2 : et-k

2
 =Z-k

 et
2

, and where A(Z)=




p

-p 
and 






q

-q , 
are characteristic transfer functions of orders p and q respectively. 

The roots of the characteristic functions of the ARMA model must be within the unit cycle to 

guarantee stationarity and invertibility of the model. 

Model Order determination can be accomplished by using several criteria : Final 

prediction Error, (FPE) Akaike information Criterion (AIC) or Minimum Description Length 

(MDL) based on covariance matrix (Liang at all , 1993). 

Given the fact that driving noise is assumed to be i.i. distributed, parameter estimation 

method to be used is either maximum likelihood or minimum variance or ordinary least squares 

method. Sufficient statistics for ARMA parameter estimation in this case includes the first and 

the second order moments e.g. mean variance and autocorrelation function. 

The model testing is accomplished by using Q statistics based on the autocorrelation 

function of innovations, Cv(l) , l=1,2…L, as suggested by Box&Pierce (1980). It shows how 

successfully the model performs a “digital whitening” of observed time series and has the form: 

 

Q ≈ n ∑ 𝐶𝐿
1

2
(l)   which has χ2 distribution with d.f. is  L-p -q, where L is max lag                    (6) 

As proved empirically, in the case of stock market returns, driving noise is not 

independent and most usually, it is non Gaussian either. Subsequently the second order moment 

and correlation function do not represent a “sufficient statistics”, either for the ARMA parameter 

estimation, or for the model testing. In fact, it is well known that for a non-Gaussian process, the 

higher order moments exist and are different from zero. However, this result failed to imminently 

inspire a concerted effort between the hold-outs of the old paradigm to develop a better theory 

for the SM volatility modeling. 

Nonetheless, it is worth mentioning the case of using Gram Charlie probability density 

function (pdf) of innovations, which is considered in reevaluating the GRACH ability to 



Journal of Finance and Accountancy Volume 17 – October, 2014 

A Cumulant-based stock market, page 6 

represent the SM data generating process (Christodoulakis G. and Sathell S. 2007). It is 

theoretically proved that the pdf of the SM squared returns does not depend on skewness but 

does depend on kurtosis. It is argued that for unbiased estimators, non-normality increases the 

discrepancy between the true and the estimated forecast error statistics. In other words, the article 

suggests solution for the GARCH evaluation problem while keeping the GARCH paradigm as it 

was originally introduced. Instead, this article shifts the emphasis from a model testing to the 

problem of ARMA parameter estimation of non Gaussian SM squared returns. 

 

2.2. The HOC-ARMA Parameter Estimation 

 

Danish statistician Thiele (1898) realized that the normal distribution was unsatisfactory 

for describing economic and demographic data and proposed the use of a special type of 

distribution to represent a new system of skewed distributions f(z) by using the quantities of the 

distribution expressed as r =r+2/2
(r+2)/2

. Thiele interpreted cumulants r as follows: “The mean 

1 depends on location and scale, the variance k2 depends on scale but is independent of the 

location, while r are independent of both location and scale and therefore describe the shape of 

the distribution” (Hald 1981, p. 7). Since then, at least three forms of a general probability 

density distribution with a priory unknown shapes were proposed: Chebishev, Gram Charlie and 

Edgeworth. Insofar the best properties in terms of integralability and convergence are found in 

Edgeworth distribution approximation. Its form allows any standard probability distribution f (z) 

to be expressed in terms of Gaussian distribution  (z):  

 

f(z) =(z) + -
3



z




z 

where z =(x-1)/√2. 

Recently, Zhang, Mykland & Aït-Sahalia (2011) proved that the empirical distribution of 

realized volatility (RV) can be described by using Edgeworth expansion and developed a general 

method for the computation of the cumulants. 

Given the fact that the second order cumulant function (correlation function) is phase 

blind, higher-order cumulants have gradually become a powerful tool for a phase estimation in 

digital signal processing, harmonic retrieval, non Gaussian signal reconstruction , detecting and 

characterizing the properties of nonlinear systems ,biomedicine and image reconstruction theory 

and hence widely used in many diverse fields. An excellent review of the HOC results is 

provided by Mendel (1991). Incredibly as it may seem, the HOC function application in stock 

market volatility parameter estimation and GARCH order determination have not be explored 

insofar. 

An extension of the well known Yule-Walker equations used for Gaussian time series 

models, in terms of higher order cumulants for non Gaussian autoregressive models is 

theoretically developed by JammalamadakaS.R., T. Subba R. &Tterdik Y (1991). In the area of 

digital signal processing, Giannakis (1990) was the first to show that AR parameters of non-

Gaussian ARMA signals can be estimated cy calculating the third- and the fourth-order cumulant 

function of the output time series, as following: 

C
3

x(r,s=  (∑(x(t)x(t+r)x(t+s))/n,          r=1,2..L ,s=1,2...L                                                        (8) 

C
4
(r,s,v,)=  (∑(x(t)x(t+r)x(t+s) x(t+v))/n                                                                                  (9) 
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where n is a number of observations and where the second-order cumulant C
2

x() is just the 

autocorrelation function of the time series xt. 

The AR parameter estimation for non-Gaussian ARA (p,q) processes is based on the 

modified Yule-Walker system where autocorrelations are replaced by third or fourth order 

cumulants (Giannakis ,1990): 

 ∑ 𝛼𝑖
𝑝
1  C

3
(k-i,k-l) = -   C3

(k,k-l)                                          k≥l≥q+1                                                       (10) 

 

∑ 𝛼𝑖
𝑝
1  C4(k-i,k-l, k-m)     = -   C4(k,k-l, k-m)                                k≥l≥ m≥q+1                                                      (11) 

 

Or, in the matrix form: 

 
C3(q+1-p,k)    C3(q+2-p,k)   …C3(q,k)                                                 

 

C3 (q+2-p,k)    C3(q+3-p,k)  …C3(q+1,k)    

C3(q,k)            C3(q+1,k)      …C3(q+p-,k)    

 

(p)      =    -C3(q+1,k)    

 

 (p-1)  =    -C3(q+2,k)    

 (1)      =   -C3(q+p,k)    

 

C
3

k *a =- c
3

k                                                                                                                                                                     (12) 

Gannakis (1990) also showed that the matrix C
3

k is of full rank and thus provide a unique 

solution for the parameters i, i=1, 2...p. 

The efficient MA parameter estimation can be performed by applying one of the 

proposed algorithms, for instance, q-slice algorithm made by Swami A. & Mendel J. (1989). Q-

slice algorithm uses autoregressive residuals {art}, calculated after estimating the AR parameters 

of the ARMA model (12). Following up, the impulse response parameters i of the pure MA 

model of art residuals are then estimated by using cumulants (8 and 9): 

 

art=∑ 𝜓∞
1  j   at-j                                       i=1.2…∞                                                                                                                                                              (13) 

 
            ∑ 𝛼𝑝

1 i C
3(q-i,j) 

j =−−−−−−−−−−−−                 j=1,2…q                                                                                                                  (14) 
            ∑ 𝛼𝑝

1 C3(q-i,0) 
           
 

Or by using :        

      ∑ 𝛼𝑝
1 iC

4(q-i,j,0)       

j =−−−−−−−−−−−−                j=1,2…q                                                                                                                   (15) 

       ∑ 𝛼𝑝
1 iC

4(q-i,0,0) 

The MA parameters of the ARMA model are obtained by means of the well known relationship 

(Box G.E.P. 1970): 
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j=  ∑ 𝛼𝑖𝜓
𝑝
0 j-i )     j=1,2…q                                                                                                                                        (16) 

 

The cumulants based ARMA estimates are shown to be asymptotically optimal ( Friendler B. & 

Porat B, 1989). 

 

2.3 HOC- ARMA Model Testing  

 

The test statistics suggested by Hinich (1996) is aimed to test serial dependence in the 

data by using auto correlation, bicorrelations and tricorrelations. The null hypothesis is that the 

innovations are realizations of a stationary pure white noise process. Therefore, under the null 

hypothesis, all C
2
( r)] = 0, for all r ≠ 0  , the bicorrelations C

3
 (r, s) =E[(t ) (t- r)(t- s)] for all r 

and s  , except where r =s=0 , and the tricorrelations  C
4
 (r, s, v) =E[(t )(t -r)(t- s)(t -v)] =0 

for all r ,s and v , except where r = s = v = 0   
The H2 statistics, known as Q statistics, originally developed by Box-Pierce (eq. 6), is used to test 

linear serial dependence. H3 and H4 are designed to test for the existence of a higher order serial 

dependence (Wild, Foster and Hinich, 2010, pg 9): 

 

H3=(n-s) ∑ ∑ {𝑠−1
𝑟=1

𝐿
𝑠=2 C

3
 (r,s)}

2 ≈χ2 with L(L-1)/2  d.f. , where L is number of lags.              (17)         

 

H4 =(n-v)
3/2 ∑ ∑ {𝑣−1

𝑠=2 ∑ {𝑠−1
𝑟=1

𝐿
𝑣=2 C3(r,s,v)}3 ≈χ2 with L(L-1)(L-2)/3  d.f.                                            (18) 

 

The number of lags L is defied as L=n
b
 , with 0<b<.5 , for the H2 and H3and <0<b<.33 

for the test based on the forth order cumulants.According to Wild , Foster and Hinich (2010)  , 

“if the null hypothesis of pure noise is rejected by the H2, H3 or H4 tests , this then signifies the 

presence of structure in the data that cannot be modeled by ARCH or GARCH or stochastic 

volatility models that assume a pure noise input “. 

 

3. EMPIRICAL RESULTS 

 

The empirical analysis is based on daily closing quotations of SM indexes during the 

period from March 30, 2010 to Feb.6, 2013, taken from Blumberg. The first part of the analysis 

is done by Eviews 7.1 software while the second part, which is related to the estimation using 

higher order cumulants, is done by using MATLAB and by using subroutines files written by the 

authors of this article. 

The analysis consists of two steps. In the first step the best dynamic regression model is 

found. The Swiss Market Index returns are explained in terms of the international stock market 

index returns which Granger cause its change, to include DJIA, SP500, NASDAQ ,DAX, 

FTSE100, NIKKEY225, BSE as well as its own trading volume. 

After finding the regression trend model, de-trended time series {et} is calculated and 

squared. The squared {et} is then used to produce both ARMA-GARCH and HOC-ARMA 

volatility model. The analysis begins with a statistical description of the distributions for the 

daily SM returns. The results appear in Table 1 (Appendix). The statistics reported confirm that 

impression: the sample skewnesses are near 0 for both series, but the sample kurtoses are well 

above the normal value of 3. Jarque-Bera and curtsies values show that in all cases return 

distribution is leptokurtic. 
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Proceeding to the Granger causality test to identify what SM indices Granger cause the 

Swiss Market Index (SMI), surprisingly it is found that the 1-day lagged DAX returns are the 

only influential for the SM index returns, as presented in Table 2a. However the coefficient of 

determination of the corresponding regression model is rather small, 5.48 %. The parameter 

estimates and their standard deviations are given in Table 2b. 

De-trended SMI returns {t} are squared to get E2SMI series, as labeled in Eviews. Its 

graph is presented in Figure 1. It has the skewness of 7.37, kurtosis of 79.45 and Jarque Bera 

index of 1851.37, as it is presented in Table 3. This description demonstrates a strong departure 

from Gaussianity and indicates the need to use higher order cumulants for a model building. 

The GARCH ARMA parameter estimates based on Eviews 7.1 software are given in 

Table 4a, while the corresponding parameter estimates based on higher order cumulants, ARMA-

HOC estimates, are presented in Table 4b. 

 From parameter estimates, proceeding with the creation of standard 1-day-ahead 

forecasts, resulted in the conditional volatilities for the SMI index, as presented in Figures 2a and 

2b. As it can be seen, those figures clearly reveal divergence between GARCH-ARMA and 

ARMA_HOC volatility series. It is important to underline that the SMI volatility estimated using 

both the second and the fourth order cumulants appears to be higher than one based on the 

second order cumulants solely. Thus classical GARCH model underestimates the SM volatility 

and consequently the stock market risk. 

Going on, the residuals from each model are calculated by using equation (7). Ultimately, 

the fourth order cumulants of the squared detrended returns are calculated by using equation (9). 

Cumulants are presented in Table 5. They are marked as: cum4e2smi, cum4ni-smi and 

cum4hocni-smi respectively. 

For easiness of visual comparison, Figure 3 shows the fourth order diagonal cumulants of 

those three series. It demonstrates that HOC-ARMA innovations {have the forth order 

cumulant function close to 0 for all lags: l=1, 2…25.  
In addition, the tree-dimensional fourth order cumulants for all lags are presented in 

Figures 4a and 4b. Those figures confirm that the ARMA-HOC model has largely eliminated the 

interdependence of non-Gaussian residuals, while the GARCH-ARMA model appeared to be 

insufficient to diminish the fourth order cumulant function, including the excess kurtosis 

C3(0,0,0) of the Swiss market squared de-trended returns. 

Not surprisingly the Hinich statistics (eq. 16), which is based on the fourth order 

cumulants, for ARMA-GARCH model residuals is 113.102 while the corresponding statistics for 

the ARMA-HOC cumulants is 12.320. The critical value 
2
crit is 67.50 for both residual 

cumulants with the level of significance of 5%. This discrepancy demonstrates that ARMA-

GRACH parameter estimation method, based on the second order statistics, does not produce 

independent residuals while ARMA-HOC parameter estimation method does produce 

independent residuals. 

 

4. CONCLUSION 

 

At the present time, the state of art of stock market volatility forecasting improvement 

leads either to a new analytical form of the GARCH class models or to the discovery of a new 

model testing methods which would include dynamics of the unknown non Gaussian probability 

density function of squared residuals and their innovations, characterized by excess kurtosis. 
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This paper suggests reorientation of the field around non Gaussian Time Series Analysis 

main principals. It triggers the paradigm shift by suggesting usage of the third and the fourth 

cumulant functions, as the sufficient statistics for the model parameter estimation prior to model 

testing. The new estimation method, which is based on higher order cumulant functions, is 

carefully described. 

The empirical analysis is based on daily stock market index data. The time horizon 

includes Oct 4, 2007 and Oct.12, 2010. The Swiss Market Index returns (SMI) are Granger 

tested for the causality with respect to DJIA, SP500, NASDAQ, DAX and FTSE100 index. 

Thus, the model building is accomplished in two steps. In the first step, a dynamic regression 

model is developed in order to capture international stock market co-movements. In the second 

step, which is essential for this paper, the squared de-trended SMI returns are described by using 

both HOC-ARMA model and GARCH-ARMA model. ARMA –HOC parameter estimation is 

performed by using the second, the third and the fourth-order cumulants. ARMA-GARCH 

parameter estimation is performed by using GED based method available in Eviews. Innovations 

produced by both methods are tested by using the Hinich (HN) statistics. In terms of Time Series 

Analysis and digital whitening of SM squared returns, it was demonstrated that ARMA-HOC 

parameter estimation method performs better in producing independent (or white) residuals. 

While the evidence from the International Stock Markets shows that the ARMA 

parameter estimation, which is based on the higher order cumulant functions, successfully 

captures non-Gaussian properties of the real stock market returns, a future research goal is yet to 

be accomplished: it remains to be investigated if HOC realized volatility, based on high 

frequency prices, constitutes a better proxy for the volatility forecast or whether dynamic HOC-

ARMA estimates of daily squared returns perform more efficiently. Nevertheless, the statistical 

and computational efficiency of the HOC based ARMA parameter estimation method is to be 

investigated further. 
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Appendix : Tables and Figures 
 

 
Table 1: Statistical description of the Stock Market Returns 

  DAX DJIA FTSE100 NIKKEY100 NSQ SMI SP500 

 Mean 0.0123 0.0166 0.0069 0.0084 0.0221 0.0048 0.0168 

 Median 0.0230 0.0224 0.0073 0.0184 0.0370 0.0114 0.0224 

 Maximum 2.2628 1.8038 2.1855 2.3983 2.1345 2.1293 2.0115 

 Minimum -2.6034 -2.4781 -2.0756 -4.8439 -2.7383 -1.8426 -2.9948 

 Std. Dev. 0.6231 0.4569 0.4872 0.5690 0.5420 0.4412 0.5055 

 Skewness -0.1272 -0.3972 -0.1387 -0.9202 -0.2469 -0.2245 -0.4135 

 Kurtosis 5.2594 6.5391 4.8959 10.6873 5.5406 6.5856 6.8803 

 Jarque-Bera 158.3148 402.9020 112.4387 1913.4690 205.1419 399.8952 482.0638 

 

Table 2a: Granger test results  

  F Prob. 

 DAX does not Granger Cause SMI 10.557 0.000 

 DJIA does not Granger Cause SMI 0.164 0.849 

 FTSE100 does not Granger Cause SMI 1.286 0.277 

 NIKKEY100 does not Granger Cause SMI 0.533 0.587 

 NSQ does not Granger Cause SMI 0.177 0.838 

 SMIVOL does not Granger Cause SMI 0.475 0.622 

 SP500 does not Granger Cause SMI 0.253 0.777 

 

Table 2b: SMI regression estimâtes  

Variable Coefficient St error t-Stat Prob.   

               DAX 0.1277 0.0256 4.9856 0.000 

DAX(-1) 0.0553 0.0257 2.1535 0.001 

DAX(-2) 0.0864 0.0256 3.3725 0.000 

           R-squared 0.054838       

 
Table 3: Descriptive Statistics –all SM squared de-trended returns   

  R2BSE R2DAX R2DJIA R2FTSE R2NIKKEY100 R2NSQ E2SMI R2SP 

 Mean 2.135 0.388 0.209 0.237 0.323 0.294 0.184 0.255 

 Median 0.075 0.087 0.046 0.063 0.122 0.074 0.046 0.052 

 Maximum 862.851 6.778 6.141 4.776 23.463 7.499 6.848 8.969 

 Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Std. Dev. 37.858 0.800 0.489 0.468 1.004 0.623 0.475 0.616 

 Skewness 20.324 4.055 5.669 4.545 17.598 5.132 7.373 6.540 

 Kurtosis 427.651 22.970 48.490 32.185 389.909 40.972 79.448 68.566 

 Jarque-Bera 5573147 14227 67309 28615 4622442 47383 185137 136894 
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Table 4a. ARMA-GARCH parameter estimates  

   AR(1) AR(2) AR(3) MA(1) MA(2) MA(3) MA(4) 

Coeff. 0.464 -0.414 0.914 -0.107 0.405 -0.789 -0.202 

St.error 0.018 0.020 0.017 0.041 0.026 0.027 0.040 

t-Stat 25.638 -21.101 52.969 -2.628 15.397 -29.603 -5.074 

 
 

Table 4b. ARMA-HOC Parameter estimates   

 

   AR(1) AR(2) AR(3) MA(1) MA(2) MA(3) MA(4) 

Coeff. 0.040 0.065 0.127 0.087 0.784 0.357 -0.010 

St.error 0.019 0.029 0.019 0.039 0.127 0.187 0.004 

t-Stat 2.121 2.243 6.616 2.230 6.180 1.910 -7.285 

 

 
Table 5.The fourth order diagonal cumulants 

Lags 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Cum4e2smi 3.91 1.23 0.21 0.20 0.19 0.68 0.12 0.33 0.13 0.02 0.03 0.03 0.24 0.31 

Cum4smini 1.79 0.32 0.19 0.19 0.08 0.39 0.20 0.27 0.04 0.02 0.04 0.06 0.15 0.19 

Cum4smihocni 1.83 0.38 0.15 0.17 0.04 0.20 0.13 0.30 0.01 0.00 0.00 0.03 0.01 0.01 

 

 

Figures: 

 

  

Figure 1: De-trended Swiss Market Index -squared returns 
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Figure 2a: Swiss Market index –GARCH volatility       Figure 2b: Swiss Market Index: HOC Volatility 

 

Figure 3: Fourth order cumulants of the squared de-trended SMI returns and its ARMA GARCH and 
ARMA-HOC residuals  
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Figure 4a: The fourth-order cumulants of the Swiss Market Index squared de trended returns and 

its ARMA-GARCH residuals. 

 

 

Figure 4b: The fourth-order cumulants of the Swiss Market Index squared de-trended returns 

and its HOC -ARMA residuals. 

 


