
Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 1

Doing database design with MySQL

Jerzy Letkowski

Western New England University

ABSTRACT

Most of the database textbooks, targeting database design and implementation for

information systems curricula support the big database systems (Oracle, MS SQL Server, DB/2,

etc.). With respect to the most important aspects of the database management: design and

implementation; one should not ignore MySQL—the most widely used, open source, relational

database management system developed in Sweden in 1995 and now owned by Oracle

Corporation. This paper shows two database-design learning cases. The first one deals with a

forward-engineering technique used to transform a data model into a physical database. The

second case shows how to reverse-engineer an existing database into a data model. Both the

cases utilize MySQL Workbench and MySQL Community Server. By contrast Microsoft Access

can only reverse engineer a physical database into its relationship diagram.

Keywords: data, model, design, database, SQL, MySQL, Microsoft Access.

Copyright statement: Authors retain the copyright to the manuscripts published in AABRI

journals. Please see the AABRI Copyright Policy at http://www.aabri.com/copyright.html.

http://www.aabri.com/copyright.html

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 2

INTRODUCTION

Database design is part of the database development process that involves analysis of a

problem definition (specifications and requirements) and provides all necessary findings for

building a logical structure of data. The problem definition specifies more or less formally the

purpose, needs, requirements and constraints for data expected to support some organizational

operations. The logical structure of data may initially be expressed in a plain language. It may,

for example, consist of a series of simple statements (subject + predicate + object) that can be

transformed into a more expressive data model. Such a model comes close to what one considers

a conceptual level or view (Date, 2004, p. 39) and it should allow for precise mapping to a

database schema (metadata), typically expressed in a data definition language (DDL). Within

relational database systems, such a DDL consists of SQL statements that create databases along

with their tables, views, indexes, etc. Data models are typically expressed as Entity Relationship

Diagrams (ERDs) and most of the contemporary database design tools are able to transform the

diagrams into the metadata. Such a transformation is referred to as forward engineering. Some

tools are also capable of reverse transformations—from the metadata to ERDs.

The first case presented in this paper shows a complete example of structuring an ERD

followed by its forward engineering. The second case uses an existing database (metadata) to

reinvent the ERD (a reverse engineering). Both the cases are implemented using MySQL

Workbench (Wikipedia-MySQLW, 2014).

LEARNING OBJECTIVES

Arguably, major challenges in teaching and learning database design are related to the

problem statement analysis and data modeling. The remaining design tasks are more predictable

and technical so that they can be easily learned or even automated.

Database management textbooks dedicate considerable space to the database design

issues. Students are guided through the process of requirement analysis, high-level (conceptual)

design and logical data modeling. As outlined in (Elmasri, at al., 2004, p. 52):

Once all the requirements have been collected and analyzed, the next step is to

create a conceptual schema for the database, using a high-level conceptual data

model. This step is called conceptual design. The conceptual schema is a concise

description of the data requirements of the users and includes a detail

description of the entity types, relationships, and constraints; these are expressed

using the concepts provided by the high-level data model. Because these

concepts do not include implementation details, they are usually easier to

understand and can be used to communicate with non-technical users.

Ideally, this phase of the database design process should be performed by a team of database

professionals, subject-matter experts, and end users. Even with a very high level of diversified

expertise of the design team, many challenges remain to be tackled. Perhaps creating the

conceptual schema and the high-level data model, despite of being free of technical

implementation details, is the hardest part of the database design process. The two cases

presented in this paper are expected to contribute to better understanding of the design process

database structures.

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 3

 The forward-engineering case presented below (Case 1) is destined to provide the

students with a good-practice instruction set that is expected to help particularly with the

transformation of the problem definition into a logical data model and into the physical database.

The reverse-engineering case (Case 2) serves as an example of documenting an existing

physical database by means of its Entity Relationship Diagram (ERD).

DATABASE DESIGN BRIEF

 It is not uncommon to interpret the database design process as logical rather than physical

design (Date 2009, p. 285). The physical design is concerned more with how logical designs are

mapped into physical databases. Case 1 shows how to implement such mapping using MySQL

Workbench. Some database professionals consider logical design more of an art than a science.

Nonetheless, there are general guidelines that are helpful in structuring logical data models.

 As mentioned, a logical data model is expected to capture entity types, attributes,

relationships, and constraints. According to (Elmasri, at al., 2004, p. 53) “The basic object of the

ER model represents an entity, which is a “thing” in the real world with an independent

existence.” At this point, it is important to distinguish between entity type and entity, since in

many situations these terms are used interchangeably. The notion of the entity type is similar to

the notion of class, used in object-oriented design. An entity type is a collection of entities

(entity instances) much like a class is a collection of objects (class instances). Going forward, in

a physical database, entity types become tables and entity instances—records (or table rows).

Typical examples of entity types are: Person, Student, Company, Department, Product, Location,

Tournament, etc. Identification of the entities is considered to be the first task in developing a

logical data model. In what follows, term “entity” is used wherever it can unambiguously

represent an “entity type”.

 Descriptive properties of an entity are referred to as attributes (Elmasri, at al., 2004, p.

54). They represent relevant characteristics of entities (within the same entity type) that are

expected to persist in a data store (database). Each attribute has its own type (a domain of values

it can take on). For example, an age of a person comes from the set of integers (if the age is to be

expressed in whole years); a student standing is one element of the set of text tokens (strings)

{‘Freshman’,’Sophomore’,’Junior’,’Senior’}; a product price is a non-negative real number; etc.

Ideally, a logical data model should provide all relevant attributes of the entity types (already

identified). A high-level design (data model) may not show all the required attributes but it

should include at least the so called keys. A key of an entity type is a subset of its attributes that

uniquely identifies each of its instances. An entity may have more than one key. The key that is

chosen to formally represent unique entity instances is referred to the primary key. For example,

in a college database system, social security numbers or other natural unique identifiers (e.g.

passport number) are used to uniquely identify each student. However, because of privacy and/or

security restrictions, the system generates [artificial] keys that are uniquely mapped into the

natural keys. Such keys are referred to a surrogate keys and they are used in daily operations as

primary keys.

 Probably the most interesting pieces of the logical data model are relationships. As

defined in (Elmasri, at al., 2004, p. 61) ,“A relationship type R among entities E1, E2, …, En

defines a set of associations—or a relationship set—among entities from these entity types.” It is

important to note that, while relationship types are defined among entity types, actual

relationship happen among entity instances.

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 4

Entity types are typically labeled as nouns and relationship types have verbal

connotation. For example, with entity types Student and Registration, one can say

<student - completes – registration>, where student is an instance of entity

Student, registration is an instance of entity Registration, and relationship

completes is a relationship type. At a more detail and technical level, such a relationship is

realized between the keys of the entities. Given the following instances of entity Student:

studentID firstName lastName

11345 John Doe

and entity Registration:

registrationID studentID classID regDate

234123 11345 4562 '2014/04/15'

relationship completes is, in short, expressed as:

 11345 - completes – 234123,

where 11345 and 234123 are primary keys of instances of entities Student and

Registration, respectively. Moreover, relationship completes is here represented by key

studentID=11345 as an attribute of the registration instance. Such a key is referred to as a

foreign key. This dual meaning of a key is a manifestation of the relationships between the

entities. For a foreign key to exist in one entity, it must be the primary key in a related entity.

Entities and relationships are major products of analysis of the problem statement and

requirements. Nouns are good candidates for entities and verbal expression identify

relationships. Relevant (required) characteristics of the entities are captured as attributes of the

entities. Additional entities may arise from more complex relationships. Important restrictions

imposed on relationships reflect the minimum or maximum number of entity instances that can

participate in the relationships. Such restrictions are referred to as cardinality or multiplicity

constrains. They include, but are not limited to (Connolly, at al., 2005, p. 356-360):

 One-to-One (1 : 1), (0..1 : 1).

 One-to-Many (1 : 1..*), (1 : 0..*), (0..1 : 1..*), (0..1 : 0..*).

 Many-to-Many (1..*: 1..*), (1..* : 0..*), (0..* : 0..*), (* : *).

For example, relationship <US_Resident – has – Social_Security_Number>

is of the One-to-One type (1 : 1). A given us_resident has one

social_security_number and a given social_security_number belongs to one

us_resident.

Relationship <Student – is – Person> is a special One-to-One relationship

(0..1 to 1). A given student is a person but a given person may but does not have to

be a student. Entity Student has an optional participation: either zero or one (0..1). Such

a relationship is also referred to as a generalization. Using the object-oriented terminology, it is

an example of inheritance. With respect to a person who happens to be a student, the latter

inherits all properties of the former. In short, this relationship can be coded as

<Student(0..1) – is – (1)Person>.

Relationship <Faculty – works for – Department> is typically a Many-to-

One relationship. A faculty works for one department and a department employs one

or more faculty. A shortcut notation for this relationship could be:

<Faculty (1..*) – works for – (1) Department>

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 5

Relationship <Student – takes – Course> is of the Many-to-Many type

(0..* : 0..*). A given student may take many courses and a given course may have

many students. There may be a student who has not yet signed up to any course and

there may be a course that has no students enrolled in it at all. It is important to note that

Many-to-Many relationships cannot be directly implemented by relational database

management systems. They must be converted to multiple simpler relations, typically—to two or

more One-To-Many relationships. For example the <Student – takes – Course>

relationship can be transformed into the following One-to-Many / Many-to-One

relationships:
One-to-Many: <Student (1) – completes – (0..*) Registration>

Many-to-One: <Registration (0..*) – joins – (1) Class>

Many-to-One: <Class (0..*) – administers – (1) Course>

An ERD is not only an excellent design vehicle but it also serves as a convenient

documentation and reference particularly for database application developers (SQL and

application programmers). It is important to note the ERDs do not completely capture the logical

design. They do an excellent job in depicting entities and relationships but they are weaker in

showing all necessary constraints (Date 2009, p. 286). Data models (diagrams) developed in

MySQL Workbench are capable of capturing only cardinality constrains of type One-to-One

and One-to-Many. Interestingly, an attempt to define a Many-to-Many relationship with

MySQL Workbench results automatically in a set of two One-to-Many relationships. MySQL

Workbench refers to ERDs as EER (Enhanced Entity Relationship) diagrams.

CASE 1: DATA MODELING AND FORWARD ENGINEERING

Problem Statement

 Consider a problem of developing a database for an on-line election system that will be

utilized to conduct election of new leaders of a non-profit organization. Some members of the

organization hold leadership positions (president, vice president, treasurer, newsletter editor,

annual meeting coordinator, secretary, etc.). It is assumed that they have been nominated to run

for the positions and that they have already accepted their nominations, thus becoming official

candidates for the available positions. The organization’s statute states that each candidate may

only run for one office and each member may cast no more than one vote for each of the offices.

The database should facilitate the voting process and record all votes assigned to the candidates

but it should not tell which member has voted for which candidate. A typical voting process is

expected to involve the following steps:

 A member logs into the system, using her/his user name and password.

 The system authenticates the member and upon success, it provides ballot forms for

positions the member has not yet voted for. Each form shows one position and the

candidates who run for this position.

 On each form, the member selects one candidate and submits the form.

 The system stores the ballot, including information about the member, the position, and

the pickup time (when the form was served). Separately, the system records a vote

record, including its sequential number (a unique electronic signature) and the selected

candidate (her/his ID).

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 6

It is important to note that the separation of the vote record, containing the selected

candidate, from the ballot (member + position) is necessary in order to maintain voting privacy.

In a real world situation, the above problem statement would usually be followed by

additional inquires, discussion and analysis. In this case, it is assumed that all the necessary

information is contained in the above statement.

It is interesting to mention that students, taking the author’s DBMS classes, attempted to

solve the above problem in many different ways. Some students followed the analysis guidelines

and developed EER diagrams as recommended. A few students tried to develop prototype

solutions in Excel. Other students went even straight to MySQL system’s shell and developed a

physical database, using SQL. Providing a detail instruction for a full cycle database design and

implementation process goes beyond capacity of this paper. However, a complete, step by step,

instruction can be retrieved from Google Drive and from a mirror URL (Letkowski, 2014). This

instruction will be maintained to keep it up to date with updated software (MySQL).

Step 1: Analysis

 As mentioned, the initial analysis of the problem statement should focus on identifying

entities (entity types). Good nominees for the entities are sets of objects that are critical to the

database’s objective: to facilitate an on-line election of the leaders (officers) of an organization.

Formulating a condensed problem description, consisting of short statements incorporating

relevant objects is helpful. Such statements will also help capture relationship between the

objects. For example:

 The organization has members.

 Some of the members (candidates) intend to serve as officers.

 The officers are elected by the members.

 The candidates receive votes.

From this brief description one can extract two core entities: Member and Office. Entity

Member consists of all the organization’s members. Entity Office includes all the leadership

positions of the organization (‘President’, ‘Vice-president for Membership’,

‘Vice-president at Large’, ‘Treasurer’, etc.).

 The analysis tasks cannot be separated from the model development tasks. As new

entities and relationships are added to the data model, other entities, attributes and relationships

may emerge. At this point, having identified the basic entities, one can start developing the

model.

Step 2: Model Building

 Since MySQL Workbench (MW) treats an entity as a table, these two terms will be used

interchangeably. Adding an entity to a MW model is simple:

 Start MW.

 Create a new EER diagram.

 Use the Table tool to add tables (entities) to the diagram (Figure 1).

 Define all attributes (Figure 2).

From the statement “The officers are elected by the members.” one can learn that there is

a Many-to-Many relationship between entities Member and Office:

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 7

 <Member (*) – elects – (*) Office>.

Each officer (an instance of entity Office) is elected by many members and each

member (an instance of entity Member) electa many officers. When this relationship is

applied (Figure 3), using the Many-to-Many (n:m) tool, MW inserts an associative entity

(Member_has_Office) as shown in Figure 4. This entity gets foreign keys from the primary

keys of the base entities (Member and Office). Combined together, they also serve a

composite primary key for this entity (table). It seems reasonable to change the default name of

this new entity to, for example, Ballot and make the participation in its relationships optional.

Ballots (instances of entity Ballot) serve as transactions so it makes sense to add the exact

time when members pick up their ballots. In MySQL Workbench, elements of the EER diagram

can be edited either by double-clicking or selecting them and pressing Ctrl+E . Figure 5 shows

how the Ballot entity is incorporated into the model.

From the statement “Some of the members intend to serve as officers.” one can learn that there is

another relationship between Member and Office. A [candidate] member is running for

one office and a given office has many [candidate] members. This is a Many-to-

One relationship:

 <Member (1:*) – is running for – (0..1) Office>,

with entity Office having an optional participation in this relationship (a given member may

but does not to have be running for any office). Because of this optional participation,

implementing this relationship directly with in entity Member would produce a foreign key,

having null values for members not being candidates. It would be an odd solution that, as

pointed out by (Date 2009, p. 332), does not naturally occur in the real world. A more elegant

solution is to separate candidates from members and to have a direct relationship between

candidates and positions (offices). Thus a Candidate entity is introduced. Since

each candidate is a member, the relationship between entity Candidate and entity

Member becomes hierarchical. Unfortunately, MySQL Workbench does not directly support

such a relationship. It does, however, support a One-to-One relation which can be applied to

the Member – Candidate relationship, assuming an optional participation of entity

Candidate:

 <Candidate (0.1) – is a – (1) Member>.

This relationship states that a candidate is a member and a member may but does not have

to be a candidate. It is added to the diagram using the identifying, One-to-One

(1:1) tool. Entity Candidate inherits its primary key from entity Member. This key also

serves as a foreign key. Once entity Candidate is added to the model, its relationship with

entity Office can be formulated, using the non-identifying, One-to-Many (1:n)

tool:

 <Candidate (*) – runs for – (1) Office>.

The primary key of entity Office generates a foreign key in entity Candidate. Figure 6

shows the model with entity Candidate and its relationships.

In the election model, ballots can’t exist without the related members and

offices. Each candidate requires existence of its related member. Thus relationships

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 8

Member – Ballot, Ballot – Office and Member - Candidate are all

identifying relationships. On the other hand, a candidate is uniquely identified just by

its member ID (mid) and different candidates may have the same office ID (oid). Thus

Candidate – Office is a non-identifying relationship.

 The final statement of the brief description (“The candidates receive votes.”)

suggests that the model should also include a Vote entity. Logically, instances of this entity

should be associated with ballots and candidates. However, because of the privacy

requirement a relationship between Vote and Ballot is not allowed. Thus entity Vote is

added to the model being related only to entity Candidate:

 <Candidate (1) – gets – (*) Vote>.

Entity Vote has its own primary key (a unique signature) which is why it is connected to entity

Candidate, using the non-identifying One-to-Many (1:n) relationship. Through this

relationship, entity Vote acquires its foreign key that is spawn by the primary key of entity

Candidate. In this relationship, entity Vote has optional participation (it is possible that

some candidates will not receive any votes). The final version of the model is shown in

Figure 6.

Step 3: Schema Generation

 Through menu options “Database > Forward Engineer …” or “File > Export > Forward

Engineer SQL CREATE Script …” MW runs a procedure that takes the EER model and

transforms it into an SQL script. Notice that the former executes the generated script, thus also

creating a physical database. The latter only generates the script that can be executed at some

other time. The following SQL code is based on the generated script:
DROP SCHEMA IF EXISTS `election`;

CREATE SCHEMA `election`;

USE `election`;

CREATE TABLE `Member` (

 `mid` INT NOT NULL,

 `firstName` VARCHAR(45) NULL,

 `lastName` VARCHAR(90) NULL,

 `pass` CHAR(12) NULL,

 `email` VARCHAR(90) NULL,

 PRIMARY KEY (`mid`));

CREATE TABLE `Office` (

 `oid` INT NOT NULL,

 `title` VARCHAR(45) NULL,

 PRIMARY KEY (`oid`));

CREATE TABLE `Ballot` (

 `mid` INT NOT NULL,

 `oid` INT NOT NULL,

 `ballotPickupTime` DATETIME NULL,

 PRIMARY KEY (`mid`, `oid`),

 FOREIGN KEY (`mid`) REFERENCES `Member` (`mid`),

 FOREIGN KEY (`oid`) REFERENCES `Office` (`oid`));

CREATE TABLE `Candidate` (

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 9

 `mid` INT NOT NULL,

 `oid` INT NOT NULL,

 PRIMARY KEY (`mid`),

 FOREIGN KEY (`mid`) REFERENCES `Member` (`mid`),

 FOREIGN KEY (`oid`) REFERENCES `Office` (`oid`));

CREATE TABLE `Vote` (

 `vid` INT NOT NULL,

 `mid` INT NOT NULL,

 PRIMARY KEY (`vid`),

 FOREIGN KEY (`mid`) REFERENCES `Candidate` (`mid`));

It is interesting to note that this SQL script is 100% compatible with Microsoft Access where

each table is to be created separately. Access converts the char and varchar data types to its

proprietary text type. In MySQL, this script can be executed in a batch mode.

CASE 2: REVERSE ENGINEERING

 ERDs are excellent documentation resources and indispensable SQL development tools.

There are situations where physical databases already exist but their logical data models are lost

or have never been developed. In such situations, MySQL Workbench can recreate the models

using its reverse software engineering procedures. All it takes is to start a new instance of

MySQL Workbench and select option “Models > Create EER Model from Database”. MW will

then provide a series of dialog boxes, letting the user to connect to the server and select the

database. Figure 8 shows an EER diagram re-created from the election database. The initial

result is not perfect. It requires a few minimal touch-ups. For example, the re-generated

association between Candidate and Member is shown and Many-to-One. It is supposed to

be One-to-One with optional participation of entity Candidate:

 <Candidate (0.1) – is a – (1) Member>.

In addition some of the optional cardinality constraints are not properly re-generated (optional

participation of entities Ballot and Vote). They should eventually be fixed according to the

original solution:

 <Ballot (0..*) – filled by – (1) Member>,

 <Ballot (0..*) – filled for – (1) Office>,

 <Candidate (1) – gets – (0..*) Vote>.

A similar, but less detailed, diagram is produced by Microsoft Access (Figure 9). A closer

inspection reveals that Access properly identifies relationship Member – Candidate as One-

to-One. However the diagram shows this relationship as One-Many (1 - ∞).

CONCLUSIONS

Relational databases are complex data structures with solid formal background and lots of

mature development and exploration tools. When dealing with just a few entities, an experienced

architect, while mentally visualizing the database structure, may be able to create the database

directly using SQL based table definitions. When designing a database in a team setting,

especially when the members of the team have diversified backgrounds, utilizing graphical tools

is imperative. Subject-matter experts, participating in the design process and having limited

database expertise, generally prefer working with graphical design tools. MySQL Workbench

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 10

can satisfy the most demanding database designers, providing excellent graphical and

technological tools. It should be given more consideration in teaching introductory database

courses as it provides complete support for the round-trip database engineering.

REFERENCES

Date, C. J. (2004). An Introduction to Database Systems. Boston: Pearson / Addison Wesley.

Date, C. J. (2009). SQL and Relational Theory. How to Write Accurate SQL Code. Cambridge:

O’Reilly.

Connolly, T., Begg, C. (2005). Database Systems. A practical Approach to Design,

Implementation, and Management. Reading: Pearson / Addison Wesley.

Elmasri, R., Navathe, S. B. (2004). Fundamentals of Database Systems. Boston: Pearson /

Addison Wesley.

Wikipedia-MySQLW (2014). MySQL Workbench.

Retrieved from: https://en.wikipedia.org/wiki/MySQL_Workbench

Letkowski, J. J. (2014), Database Design with MySQL Workbench. URL:

https://docs.google.com/presentation/d/1S4LF9SelYsQSYpMqzuU09OAQOmKPS3zt9y

GZ9XO-sRs/edit?usp=sharing. Mirror URL:

http://quantlabs.com/db/design/withMySQL_Workbench.pdf.

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 11

APPENDIX

Figure 1 The base entities, Member and Office, placed on the model panel, using the table tool.

Figure 2 The attributes of the Member entity. Attribute mid is the primary key.

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 12

Figure 3 Using the Many-to-Many relationship tool, the entities Member and Office are

connected in order to define the relationship between them.

Figure 4 MySQL Workbench inserts an associative entity (Member_has_Office), resulting from

the Many-to-Many relationship.

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 13

Figure 5 The associative entity, Ballot, and its relationships are edited to represent facts about

the members completing their ballots for the positions (offices) they vote for. The

entity’s participation in this relationship is set to optional.

Figure 6 Entity Candidate and its relationships extend the model.

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 14

Figure 7 With the Vote entity and its relationship, the model is complete.

Figure 8 The EER model reverse-engineered from the database.

Journal of Technology Research Volume 6 – December, 2014

Doing database design, page 15

Figure 9 A Relationship diagram produced by Microsoft Access.

